Eco-Health Dynamics: Climate Change, Sustainable Development and the Emergence of Infectious Challenges
Arnab Chatterjee
Krishnagar Govt. College, Department of Zoology, Krishnagar 741101, West Bengal, India.
https://orcid.org/0009-0005-5222-9979
Sutapa Sanyal
Krishnagar Govt. College, Department of Zoology, Krishnagar 741101, West Bengal, India.
https://orcid.org/0000-0002-3231-8270
Published online: 17th December, 2023
DOI: https://doi.org/10.52756/boesd.2023.e02.012
Keywords: Climate change, sustainable development, vector-borne disease, environmental policies.
Abstract:
This comprehensive review explores the intricate relationships between climate change, sustainable development and emerging infectious diseases (EIDs). Changes in climate parameters, such as rising temperatures and altered precipitation patterns pose profound ecological, environmental and socio-economic threats. The review delves into emerging threats such as vector-borne diseases, the resurgence of dormant pathogens due to melting ice layers and the complex global health challenge of antimicrobial resistance. It emphasizes the importance of integrating EID risk into sustainable development planning through a multisectoral approach. The review underscores the pivotal role of Sustainable Development Goals (SDGs), particularly Goals 2 and 15, in mitigating EID risks, emphasizing the delicate balance required to simultaneously enhance agricultural productivity and conserve terrestrial ecosystems. Mitigation and adaptation tactics required for responding to climate change necessitate effective international policies, particularly in key sectors like agriculture, industry, forestry, transport and land use. Associations between climate change and infectious diseases suggest collaborative efforts among researchers, policymakers and nations to achieve a balanced and sustainable future. Effective mitigation, calibrated with the UN’s 2030 Agenda for Sustainable Development, lowers the risks of new infectious diseases and ensures the well-being of both ecosystems and societies on a global scale.
References:
- A Mansour, S. (2014). Impact of climate change on air and water-borne diseases. Air & Water Borne Diseases, 03(01). https://doi.org/10.4172/2167-7719.1000e126
- Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6
- Abraham, E. P., & Chain, E. (1940). An enzyme from bacteria is able to destroy penicillin. Nature, 146(3713), 837–837. https://doi.org/10.1038/146837a0
- Adger, N. W., Arnell, N. W., & Tompkins, E. L. (2005). Successful adaptation to climate change across scales. Global Environmental Change, 15(2), 77–86. https://doi.org/10.1016/j.gloenvcha.2004.12.005
- Adnan, A. T., Chevallier, P., Arnaud, Y., Neppel, L., & Ahmad, B. (2011). Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. Journal of Hydrology, 409(1–2), 104–117. https://doi.org/10.1016/j.jhydrol.2011.08.035
- Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
- Andersson, Y., & Ekdahl, K. (2006). Wound infections due to Vibrio cholerae in Sweden after swimming in the Baltic Sea, summer 2006. Weekly Releases (1997–2007), 11(31). https://doi.org/10.2807/esw.11.31.03013-en
- Andreassen, A., Jore, S., Cuber, P., Dudman, S., Tengs, T., Isaksen, K., Hygen, H. O., Viljugrein, H., Ånestad, G., Ottesen, P., & Vainio, K. (2012). Prevalence of tick borne encephalitis virus in tick nymphs in relation to climatic factors on the southern coast of Norway. Parasites & Vectors, 5(1), 177. https://doi.org/10.1186/1756-3305-5-177
- Antonenko, Y. N., Khailova, L. S., Knorre, D. A., Markova, O. V., Rokitskaya, T. I., Ilyasova, T. M., Severina, I. I., Kotova, E. A., Karavaeva, Y. E., Prikhodko, A. S., Severin, F. F., &Skulachev, V. P. (2013). Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria. PLoS ONE, 8(4), e61902. https://doi.org/10.1371/journal.pone.0061902
- Ashbolt, N. J. (2015). Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports, 2(1), 95–106. https://doi.org/10.1007/s40572-014-0037-5
- Balsalobre-Lorente, D., Ibáñez-Luzón, L., Usman, M., & Shahbaz, M. (2022). The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renewable Energy, 185, 1441–1455. https://doi.org/10.1016/j.renene.2021.10.059
- Bartlow, A. W., Manore, C., Xu, C., Kaufeld, K. A., Del Valle, S., Ziemann, A., Fairchild, G., & Fair, J. M. (2019). Forecasting zoonotic infectious disease response to climate change: Mosquito vectors and a changing environment. Veterinary Sciences, 6(2), 40. https://doi.org/10.3390/vetsci6020040
- Basak, A., & Sanyal, T. (2022). Study of an age-based Covid-19 outbreak model and the effect of demographic structure of a state on infectious disease dynamics [Preprint]. Epidemiology. https://doi.org/10.1101/2022.12.28.22284021
- Basak, A., Rahaman, S., Guha, A., & Sanyal, T. (2021). Dynamics of the Third Wave, modelling COVID-19 pandemic with an outlook towards India [Preprint]. Epidemiology. https://doi.org/10.1101/2021.08.17.21262193
- Bates, A. E., Pecl, G. T., Frusher, S., Hobday, A. J., Wernberg, T., Smale, D. A., Sunday, J. M., Hill, N. A., Dulvy, N. K., Colwell, R. K., Holbrook, N. J., Fulton, E. A., Slawinski, D., Feng, M., Edgar, G. J., Radford, B. T., Thompson, P. A., & Watson, R. A. (2014). Defining and observing stages of climate-mediated range shifts in marine systems. Global Environmental Change, 26, 27–38. https://doi.org/10.1016/j.gloenvcha.2014.03.009
- Battisti, David. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323(5911), 240–244. https://doi.org/10.1126/science.1164363
- Baylis, M. (2017). Potential impact of climate change on emerging vector-borne and other infections in the UK. Environmental Health, 16(S1), 112. https://doi.org/10.1186/s12940-017-0326-1
- Berg, M. P., Kiers, E. T., Driessen, G., Van Der Heijden, M., Kooi, B. W., Kuenen, F., Liefting, M., Verhoef, H. A., & Ellers, J. (2010). Adapt or disperse: Understanding species persistence in a changing world. Global Change Biology, 16(2), 587–598. https://doi.org/10.1111/j.1365-2486.2009.02014.x
- Beugnet, F., & Chalvet-Monfray, K. (2013). Impact of climate change in the epidemiology of vector-borne diseases in domestic carnivores. Comparative Immunology, Microbiology and Infectious Diseases, 36(6), 559–566. https://doi.org/10.1016/j.cimid.2013.07.003
- Biagini, P., Thèves, C., Balaresque, P., Géraut, A., Cannet, C., Keyser, C., Nikolaeva, D., Gérard, P., Duchesne, S., Orlando, L., Willerslev, E., Alekseev, A. N., De Micco, P., Ludes, B., & Crubézy, E. (2012). Variola virus in a 300-year-old Siberian mummy. New England Journal of Medicine, 367(21), 2057–2059. https://doi.org/10.1056/NEJMc1208124
- Bidle, K. D., Lee, S., Marchant, D. R., & Falkowski, P. G. (2007). Fossil genes and microbes in the oldest ice on Earth. Proceedings of the National Academy of Sciences, 104(33), 13455–13460. https://doi.org/10.1073/pnas.0702196104
- Bouchard, C., Dibernardo, A., Koffi, J., Wood, H., Leighton, P., & Lindsay, L. (2019). Increased risk of tick-borne diseases with climate and environmental changes. Canada Communicable Disease Report, 45(4), 83–89. https://doi.org/10.14745/ccdr.v45i04a02
- Bunyavanich, S., Landrigan, C. P., McMichael, A. J., & Epstein, P. R. (2003). The impact of climate change on child health. Ambulatory Pediatrics, 3(1), 44–52. https://doi.org/10.1367/1539-4409(2003)003<0044:TIOCCO>2.0.CO;2
- Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., & Jin, F.-F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111–116. https://doi.org/10.1038/nclimate2100
- Cann, K. F., Thomas, D. Rh., Salmon, R. L., Wyn-Jones, A. P., & Kay, D. (2013). Extreme water-related weather events and waterborne disease. Epidemiology and Infection, 141(4), 671–686. https://doi.org/10.1017/S0950268812001653
- Carignan, A., Valiquette, L., &Laupland, K. B. (2019). Impact of climate change on emerging infectious diseases: Implications for Canada. Official Journal of the Association of Medical Microbiology and Infectious Disease Canada, 4(2), 55–59. https://doi.org/10.3138/jammi.2018-12-10
- Cull, B., Pietzsch, M. E., Hansford, K. M., Gillingham, E. L., & Medlock, J. M. (2018). Surveillance of British ticks: An overview of species records, host associations, and new records of Ixodes ricinus distribution. Ticks and Tick-Borne Diseases, 9(3), 605–614. https://doi.org/10.1016/j.ttbdis.2018.01.011
- Deb, H., Saha, A., Deore, S., & Sanyal, T. (2022). Elephant Corridor loss due to anthropogenic stress – a study of change in forest cover using satellite data in the Sonitpur District, Assam, India. Journal of Wildlife and Biodiversity, 7(2), 21–34. https://doi.org/10.5281/zenodo.6627395
- Dhimal, M., Ahrens, B., & Kuch, U. (2015). Climate change and spatiotemporal distributions of vector-borne diseases in Nepal – a systematic synthesis of literature. PLOS ONE, 10(6), e0129869. https://doi.org/10.1371/journal.pone.0129869
- Di Marco, M., Baker, M. L., Daszak, P., De Barro, P., Eskew, E. A., Godde, C. M., Harwood, T. D., Herrero, M., Hoskins, A. J., Johnson, E., Karesh, W. B., Machalaba, C., Garcia, J. N., Paini, D., Pirzl, R., Smith, M. S., Zambrana-Torrelio, C., & Ferrier, S. (2020). Sustainable development must account for pandemic risk. Proceedings of the National Academy of Sciences, 117(8), 3888–3892. https://doi.org/10.1073/pnas.2001655117
- El-Sayed, A., & Kamel, M. (2020). Climatic changes and their role in emergence and re-emergence of diseases. Environmental Science and Pollution Research, 27(18), 22336–22352. https://doi.org/10.1007/s11356-020-08896-w
- El-Sayed, A., Ahmed, S., &Awad, W. (2008). Do camels (Camelus dromedarius) play an epidemiological role in the spread of Shiga Toxin producing Escherichia coli (Stec) infection? Tropical Animal Health and Production, 40(6), 469–473. https://doi.org/10.1007/s11250-007-9122-1
- Garner, E., Inyang, M., Garvey, E., Parks, J., Glover, C., Grimaldi, A., Dickenson, E., Sutherland, J., Salveson, A., Edwards, M. A., & Pruden, A. (2019). Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Research, 151, 75–86. https://doi.org/10.1016/j.watres.2018.12.003
- Gash, J. H. C. (Ed.). (1997). Amazonian deforestation and climate. John Wiley.
- Geisler, W.M. (2012). Infections Caused by Chlamydia trachomatis: Including Lymphogranuloma Venereum. In Netter’s Infectious Diseases, WB Saunders, pp. 335-343.
- Ghosh, S., Nahar, N., Dasgupta, D., Sarkar, B., Biswas, P., Chakraborty, R., Acharya, C.K., Jana, S.K., &Madhu, N.R. (2022). Socioeconomic Disparity in Health of Rural Communities in the Himalayan Foothills: Mahananda Wildlife Sanctuary, West Bengal. Chettinad Health City Medical Journal, 11(2), 9-18. https://doi.org/10.24321/2278.2044.202215
- Ghosh, S. (2022). Culicoides species: The Biting Midges. © International Academic Publishing House (IAPH), Dr. N. R. Madhu &Dr. B. K. Behera (eds.), A Basic Overview of Environment and Sustainable Development, pp. 80-91. ISBN: 978-81-957954-2-0 https://doi.org/10.52756/boesd.2022.e01.008
- Gilbert, L. (2016). Louping ill virus in the UK: A review of the hosts, transmission and ecological consequences of control. Experimental and Applied Acarology, 68(3), 363–374. https://doi.org/10.1007/s10493-015-9952-x
- Gosling, S. N., & Arnell, N. W. (2016). A global assessment of the impact of climate change on water scarcity. Climatic Change, 134(3), 371–385. https://doi.org/10.1007/s10584-013-0853-x
- Greenblatt, C. L., Davis, A., Clement, B. G., Kitts, C. L., Cox, T., & Cano, R. J. (1999). Diversity of microorganisms isolated from amber. Microbial Ecology, 38(1), 58–68. https://doi.org/10.1007/s002489900153
- Gregory, J. M., Church, J. A., Boer, G. J., Dixon, K. W., Flato, G. M., Jackett, D. R., Lowe, J. A., O’Farrell, S. P., Roeckner, E., Russell, G. L., Stouffer, R. J., & Winton, M. (2001). Comparison of results from several AOGCMs for global and regional sea-level change 1900-2100. Climate Dynamics, 18(3–4), 225–240. https://doi.org/10.1007/s003820100180
- Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., Russell, G., Tselioudis, G., Cao, J., Rignot, E., Velicogna, I., Tormey, B., Donovan, B., Kandiano, E., von Schuckmann, K., Kharecha, P., Legrande, A. N., Bauer, M., & Lo, K.-W. (2016). Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmospheric Chemistry and Physics, 16(6), 3761–3812. https://doi.org/10.5194/acp-16-3761-2016
- Hendriksen, R. S., Munk, P., Njage, P., Van Bunnik, B., McNally, L., Lukjancenko, O., Röder, T., Nieuwenhuijse, D., Pedersen, S. K., Kjeldgaard, J., Kaas, R. S., Clausen, P. T. L. C., Vogt, J. K., Leekitcharoenphon, P., Van De Schans, M. G. M., Zuidema, T., De Roda Husman, A. M., Rasmussen, S., Petersen, B., … Aarestrup, F. M. (2019). Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 10(1), 1124. https://doi.org/10.1038/s41467-019-08853-3
- Hickmann, K. S., Fairchild, G., Priedhorsky, R., Generous, N., Hyman, J. M., Deshpande, A., & Del Valle, S. Y. (2015). Forecasting the 2013–2014 influenza season using wikipedia.
- PLOS Computational Biology, 11(5), e1004239. https://doi.org/10.1371/journal.pcbi.1004239
- Huang, W., Gao, Q.X., Cao, G., Ma, Z.Y., Zhang, W.D., & Chao, Q.C. (2016). Effect of urban symbiosis development in China on GHG emissions reduction. Advances in Climate Change Research, 7(4), 247–252. https://doi.org/10.1016/j.accre.2016.12.003
- Intergovernmental Panel on Climate Change (IPCC). (2018). “Summary for Policymakers.” In: “Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.” Edited by Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, and Waterfield T.
- Intergovernmental Panel on Climate Change (IPCC). (2020). Climate Change and Land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems; Summary for Policymakers.
- Ishikawa-Ishiwata, Y., & Furuya, J. (2022). Economic evaluation and climate change adaptation measures for rice production in Vietnam using a supply and demand model: Special emphasis on the Mekong river delta region in Vietnam. In T. Ito, M. Tamura, A. Kotera, & Y. Ishikawa-Ishiwata (Eds.), Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer International Publishing. https://doi.org/10.1007/978-3-030-81207-2_4
- Jado, I., Oteo, J. A., Aldámiz, M., Gil, H., Escudero, R., Ibarra, V., Portu, J., Portillo, A., Lezaun, M. J., García-Amil, C., Rodríguez-Moreno, I., & Anda, P. (2007). Rickettsia monacensis and human disease, Spain. Emerging Infectious Diseases, 13(9), 1405–1407. https://doi.org/10.3201/eid1309.060186
- Jaenson, T. G., Hjertqvist, M., Bergström, T., & Lundkvist, Å. (2012). Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasites & Vectors, 5(1), 184. https://doi.org/10.1186/1756-3305-5-184
- Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., &Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993. https://doi.org/10.1038/nature06536
- Katayama, T., Tanaka, M., Moriizumi, J., Nakamura, T., Brouchkov, A., Douglas, T. A., Fukuda, M., Tomita, F., & Asano, K. (2007). Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Applied and Environmental Microbiology, 73(7), 2360–2363. https://doi.org/10.1128/AEM.01715-06
- Kaur, P., Arora, G., & Aggarwal, A. (2023). Psycho-Social Impact of COVID-2019 on Work-Life Balance of Health Care Workers in India: A Moderation-Mediation Analysis. Int. J. Exp. Res. Rev., 35, 62-82. https://doi.org/10.52756/ijerr.2023.v35spl.007
- Kawahara, M., Rikihisa, Y., Isogai, E., Takahashi, M., Misumi, H., Suto, C., Shibata, S., Zhang, C., & Tsuji, M. (2004). Ultrastructure and phylogenetic analysis of ‘CandidatusNeoehrlichiamikurensis’ in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1837–1843. https://doi.org/10.1099/ijs.0.63260-0
- Kazimírová, M., Thangamani, S., Bartíková, P., Hermance, M., Holíková, V., Štibrániová, I., & Nuttall, P. A. (2017). Tick-borne viruses and biological processes at the tick-host-virus interface. Frontiers in Cellular and Infection Microbiology, 7, 339. https://doi.org/10.3389/fcimb.2017.00339
- Lindgren, E., & Gustafson, R. (2001). Tick-borne encephalitis in Sweden and climate change. The Lancet, 358(9275), 16–18. https://doi.org/10.1016/S0140-6736(00)05250-8
- Lindgren, E., Tälleklint, L., & Polfeldt, T. (2000). Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environmental Health Perspectives, 108(2), 119–123. https://doi.org/10.1289/ehp.00108119
- Linthicum, K. J., Anyamba, A., Tucker, C. J., Kelley, P. W., Myers, M. F., & Peters, C. J. (1999). Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science, 285(5426), 397–400. https://doi.org/10.1126/science.285.5426.397
- Lipczynska-Kochany, E. (2018). Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: A review. Science of The Total Environment, 640–641, 1548–1565. https://doi.org/10.1016/j.scitotenv.2018.05.376
- Mallick, A., & Panigrahi, A. (2018). Effect of temperature variation on disease proliferation of common fishes in perspective of climate change. Int. J. Exp. Res. Rev., 16, 40-49. https://doi.org/10.52756/ijerr.2018.v16.005
- Manes, S., Costello, M. J., Beckett, H., Debnath, A., Devenish-Nelson, E., Grey, K.-A., Jenkins, R., Khan, T. M., Kiessling, W., Krause, C., Maharaj, S. S., Midgley, G. F., Price, J., Talukdar, G., & Vale, M. M. (2021). Endemism increases species’ climate change risk in areas of global biodiversity importance. Biological Conservation, 257, 109070. https://doi.org/10.1016/j.biocon.2021.109070
- Mansfield, K. L., Johnson, N., Phipps, L. P., Stephenson, J. R., Fooks, A. R., & Solomon, T. (2009). Tick-borne encephalitis virus – a review of an emerging zoonosis. Journal of General Virology, 90(8), 1781–1794. https://doi.org/10.1099/vir.0.011437-0
- Mbaeyi, C., Ryan, M.J., Smith, P., Mahamud, A., Farag, N., Haithami, S., Sharaf, M., Jorba, J.C., & Ehrhardt, D. (2017). Response to a large polio outbreak in a setting of conflict—middle East, 2013–2015. Morbidity and Mortality Weekly Report, 66(8), 227. https://doi.org/10.15585/mmwr.mm6608a6.
- Mellor, P. S., & Leake, C. J. (2000). Climatic and geographic influences on arboviral infections and vectors: EN- FR- ES-. Revue Scientifique et Technique de l’OIE, 19(1), 41–54. https://doi.org/10.20506/rst.19.1.1211
- Michel, D., Eriksson, M., & Klimes, M. (2021). Climate change and (In)security in transboundary river basins. In A. Swain, J. Öjendal, & A. Jägerskog (Eds.), Handbook of Security and the Environment. Edward Elgar Publishing. https://doi.org/10.4337/9781789900668.00012
- Milazzo, A., Giles, L. C., Zhang, Y., Koehler, A. P., Hiller, J. E., & Bi, P. (2017). Factors influencing knowledge, food safety practices and food preferences during warm weather of salmonella and campylobacter cases in South Australia. Foodborne Pathogens and Disease, 14(3), 125–131. https://doi.org/10.1089/fpd.2016.2201
- Morse, S. S., Mazet, J. A., Woolhouse, M., Parrish, C. R., Carroll, D., Karesh, W. B., Zambrana-Torrelio, C., Lipkin, W. I., & Daszak, P. (2012). Prediction and prevention of the next pandemic zoonosis. The Lancet, 380(9857), 1956–1965. https://doi.org/10.1016/S0140-6736(12)61684-5
- Mukherjee, P., Saha, A., Sen, K., Erfani, H., Madhu, N. R., & Sanyal, T. (2022). Conservation and prospects of Indian lacustrine fisheries to reach the sustainable developmental goals EKC (SDG 17). In N. R. Madhu (Ed.), A Basic Overview of Environment and Sustainable Development (1st ed., pp. 98–116). International Academic Publishing House (IAPH). https://doi.org/10.52756/boesd.2022.e01.010
- Murshed, M., & Dao, N. T. T. (2022). Revisiting the co2 emission-induced EKC hypothesis in South Asia: The role of export quality improvement. Geo. Journal, 87(2), 535–563. https://doi.org/10.1007/s10708-020-10270-9
- Murshed, M., Nurmakhanova, M., Elheddad, M., & Ahmed, R. (2020). Value addition in the services sector and its heterogeneous impacts on CO2 emissions: Revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environmental Science and Pollution Research, 27(31), 38951–38973. https://doi.org/10.1007/s11356-020-09593-4
- Ng, V., Rees, E., Lindsay, R., Drebot, M., Brownstone, T., Sadeghieh, T., & Khan, S. (2019). Could exotic mosquito-borne diseases emerge in Canada with climate change? Canada Communicable Disease Report, 45(4), 98–107. https://doi.org/10.14745/ccdr.v45i04a04
- Papa, A., Mirazimi, A., Köksal, I., Estrada-Pena, A., & Feldmann, H. (2015). Recent advances in research on Crimean-Congo hemorrhagic fever. Journal of Clinical Virology, 64, 137–143. https://doi.org/10.1016/j.jcv.2014.08.029
- Park, M., Park, K., & Bahk, G. (2018). Interrelationships between multiple climatic factors and incidence of foodborne diseases. International Journal of Environmental Research and Public Health, 15(11), 2482. https://doi.org/10.3390/ijerph15112482
- Pruden, A., Larsson, D. G. J., Amézquita, A., Collignon, P., Brandt, K. K., Graham, D. W., Lazorchak, J. M., Suzuki, S., Silley, P., Snape, J. R., Topp, E., Zhang, T., & Zhu, Y.-G.
- (2013). Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121(8), 878–885. https://doi.org/10.1289/ehp.1206446
- Prudhomme, J., Fontaine, A., Lacour, G., Gantier, J.C., Diancourt, L., Velo, E., Bino, S., Reiter, P., & Mercier, A. (2019). The native European Aedes geniculatus mosquito species can transmit chikungunya virus. Emerging Microbes & Infections, 8(1), 962–972. https://doi.org/10.1080/22221751.2019.1634489
- Randolph, S. E. (2004). Evidence that climate change has caused ‘emergence’ of tick-borne diseases in Europe? International Journal of Medical Microbiology Supplements, 293, 5–15. https://doi.org/10.1016/S1433-1128(04)80004-4
- Ryan, S. J., Carlson, C. J., Mordecai, E. A., & Johnson, L. R. (2019). Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Neglected Tropical Diseases, 13(3), e0007213. https://doi.org/10.1371/journal.pntd.0007213
- Saha, A., & Sarkar, C. (2022). Protecting The Precious Sundarbans: A Comprehensive Review of Biodiversity, Threats and Conservation Strategies In The Mangrove Ecosystem. Conscientia, 10, 60-80.
- Saha, A., Moitra, S., & Sanyal, T. (2022a). Anticancer and antidiabetic potential of phytochemicals derived from Catharanthus roseus: A key emphasis to vinca alkaloids. In B. Sarkar (Ed.), The Basic Handbook of Indian Ethnobotany and Traditional Medicine (1st ed., pp. 1–19). International Academic Publishing House (IAPH). https://doi.org/10.52756/bhietm.2022.e01.001
- Saha, A., Pushpa, Moitra, S., Basak, D., Brahma, S., Mondal, D., Molla, S. H., Samadder, A., & Nandi, S. (2023). Targeting cysteine proteases and their inhibitors to combat trypanosomiasis. Current Medicinal Chemistry, 30. https://doi.org/10.2174/0929867330666230619160509
- Saha, A., Samadder, A., & Nandi, S. (2022b). Stem cell therapy in combination with naturopathy: Current progressive management of diabetes and associated complications. Current Topics in Medicinal Chemistry, 23(8), 649–689. https://doi.org/10.2174/1568026623666221201150933
- Schets, F. M., Van Den Berg, H. H. J. L., Demeulmeester, A. A., Van Dijk, E., Rutjes, S. A., Van Hooijdonk, H. J. P., & De Roda Husman, A. M. (2006). Vibrio alginolyticus infections in the Netherlands after swimming in the North Sea. Weekly Releases (1997–2007), 11(45). https://doi.org/10.2807/esw.11.45.03077-en
- Semenza, J. C., Herbst, S., Rechenburg, A., Suk, J. E., Höser, C., Schreiber, C., & Kistemann, T. (2012). Climate change impact assessment of food- and waterborne diseases. Critical Reviews in Environmental Science and Technology, 42(8), 857–890. https://doi.org/10.1080/10643389.2010.534706
- Sen, K., Sanyal, T., & Karmakar, S. R. (2021). Covid-19 forced lockdown: Nature’s strategy to rejuvenate itself. World Journal of Environmental Biosciences, 10(2), 9–17. https://doi.org/10.51847/mhLv0Gijx5
- Shuman, E. K. (2010). Global climate change and infectious diseases. New England Journal of Medicine, 362(12), 1061–1063. https://doi.org/10.1056/NEJMp0912931
- Stoett, P., Daszak, P., Romanelli, C., Machalaba, C., Behringer, R., Chalk, F., Cornish, S., Dalby, S., De Souza Dias, B. F., Iqbal, Z., Koch, T., Krampe, F., Lo, M., Martin, K., Matthews, K., Nickerson, J. W., Orbinski, J., Price-Smith, A., Prieur-Richard, A.-H., … Swain, A. (2016). Avoiding catastrophes: Seeking synergies among the public health, environmental protection, and human security sectors. The Lancet Global Health, 4(10), e680–e681. https://doi.org/10.1016/S2214-109X(16)30173-5
- Strasser, U., Vilsmaier, U., Prettenhaler, F., Marke, T., Steiger, R., Damm, A., Hanzer, F., Wilcke, R. A. I., &Stötter, J. (2014). Coupled component modelling for inter- and transdisciplinary climate change impact research: Dimensions of integration and examples of interface design. Environmental Modelling & Software, 60, 180–187. https://doi.org/10.1016/j.envsoft.2014.06.014
- Tian, H., Zhou, S., Dong, L., Van Boeckel, T. P., Cui, Y., Newman, S. H., Takekawa, J. Y., Prosser, D. J., Xiao, X., Wu, Y., Cazelles, B., Huang, S., Yang, R., Grenfell, B. T., & Xu, B. (2015). Avian influenza H5N1 viral and bird migration networks in Asia. Proceedings of the National Academy of Sciences, 112(1), 172–177. https://doi.org/10.1073/pnas.1405216112
- Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515(7528), 518–522. https://doi.org/10.1038/nature13959
- Tokarevich, N. K., Tronin, A. A., Blinova, O. V., Buzinov, R. V., Boltenkov, V. P., Yurasova, E. D., & Nurse, J. (2011). The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia. Global Health Action, 4(1), 8448. https://doi.org/10.3402/gha.v4i0.8448
- Touchon, M., Hoede, C., Tenaillon, O., Barbe, V., Baeriswyl, S., Bidet, P., Bingen, E., Bonacorsi, S., Bouchier, C., Bouvet, O., Calteau, A., Chiapello, H., Clermont, O., Cruveiller, S., Danchin, A., Diard, M., Dossat, C., Karoui, M. E., Frapy, E., … Denamur, E. (2009). Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genetics, 5(1), e1000344. https://doi.org/10.1371/journal.pgen.1000344
- U.S. Global Change Research Program (Ed.). (2009). Global climate change impacts in the United States: A state of knowledge report. Cambridge University Press.
- UNEP. (2017). United Nations environment programme: Antimicrobial resistance from environmental pollution among-biggest emerging health threats, says UN Environment. UNEP – UN Environment Programme. http://www.unep.org/node
- United Nations Food and Agricultural Organization (FAO). (2011). “Energy-Smart” Food for People and Climate. FAO Documents.https://www.fao.org/documents/card/en?details=322a07bf-b2e2-5b6a-8e1a-dbbff237a135/
- Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277(5325), 494–499.https://doi.org/10.1126/science.277.5325.494
- Walsh, M. G., De Smalen, A. W., & Mor, S. M. (2018). Climatic influence on anthrax suitability in warming northern latitudes. Scientific Reports, 8(1), 9269. https://doi.org/10.1038/s41598-018-27604-w
- Wang, N., Guo, X., Xu, J., Kong, X., Gao, S., & Shan, Z. (2014). Pollution characteristics and environmental risk assessment of typical veterinary antibiotics in livestock farms in Southeastern China. Journal of Environmental Science and Health, Part B, 49(7), 468–479. https://doi.org/10.1080/03601234.2014.896660
- WHO. (2018). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
- Wu, D., Su, Y., Xi, H., Chen, X., & Xie, B. (2019). Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Research, 158, 11–21. https://doi.org/10.1016/j.watres.2019.03.010
How to Cite
Arnab Chatterjee, Sutapa Sanyal (2023). Eco-Health Dynamics: Climate Change, Sustainable Development and the Emergence of Infectious Challenges© International Academic Publishing House (IAPH), Shubhadeep Roychoudhury, Tanmay Sanyal, Koushik Sen & Sudipa Mukherjee Sanyal(eds.), A Basic Overview of Environment and Sustainable Development[Volume: 2], pp. 185-203. ISBN: 978-81-962683-8-1.
DOI: https://doi.org/10.52756/boesd.2023.e02.012
SHARE WITH EVERYONE
Continue reading in any device
Our Other Books –