Utilizing Climate Physics: Advancing SDG 13 with Integrated Low Carbon Energy from Diverse Sources – A Glimpse Ahead

Soumya Chatterjee
Department of Physics under Basic Science & Humanities, Narula Institute of Technology, Agarpara,Kolkata, West Bengal 700109.
OrchideID Icon https://orcid.org/0000-0001-8591-7739

Pronoy Mukherjee
Department of Zoology, Rishi Bankim Chandra College, Naihati, West Bengal, India.
OrchideID Icon https://orcid.org/0000-0002-4901-0141

Aloke Saha
Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India.
OrchideID Icon https://orcid.org/0000-0001-9985-3481

Koushik Sen
Department of Zoology, Jhargram Raj College, Jhargram, West Bengal, India.
OrchideID Icon https://orcid.org/0000-0002-6995-7682

Raju Das
Assistant Secretary (Administration), West Bengal Council of Higher Secondary Education,Vidyasagar Bhavan, Karunamoyee Block DJ, Sector II, Salt Lake City Kolkata 700091, W.B., India.

Tanmay Sanyal
Department of Zoology, Krishnagar Govt. College, Krishnagar 741101, West Bengal, India.
OrchideID Icon https://orcid.org/0000-0002-0046-1080

Published online: 17th December, 2023

DOI: https://doi.org/10.52756/boesd.2023.e02.031

Keywords: Climate physics, Sustainable development goal, Climate patterns, Ocean-atmosphere interaction, Paleoclimate Physics, Computational simulations.

Abstract:

This study examines the crucial role of climate physics in advancing Sustainable Development Goal (SDG) 13, “Climate Action,” through the incorporation of low-carbon emission energy derived from both traditional and unconventional sources. As the international community grapples with the urgent imperative to address climate change, a profound understanding of the intricate dynamics of climate physics is essential for formulating effective solutions. This research delves into the intricacies of climate physics, exploring how they can be utilized to facilitate the shift towards sustainable energy systems. The investigation draws insights from a spectrum of energy sources, encompassing conventional options like solar, wind, and hydroelectric power, alongside nonconventional sources such as geothermal and tidal energy. The primary objective of this study is to showcase the viability and effectiveness of integrating a diverse range of energy resources to mitigate carbon emissions. Through a thorough examination of existing literature and case studies, this project aims to provide a glimpse into the prospective future of energy systems marked by diminished environmental impact and heightened resilience to climate change. By elucidating the synergies between climate physics and sustainable energy technologies, this research endeavours to furnish practical insights for policymakers, energy professionals, and stakeholders engaged in the pursuit of SDG 13. Ultimately, harnessing climate physics as a catalyst for integrating sustainable energy holds substantial potential to propel global initiatives toward a more resilient, low-carbon future.

References:

  • Abdmouleh, Z., Alammari, R. A. M., & Gastli, A. (2015). Review of policies encouraging renewable energy integration & best practices. Renewable and Sustainable Energy Reviews, 45, 249–262. https://doi.org/10.1016/j.rser.2015.01.035
  • Banwell, A. F., Burton, J. C., Cenedese, C., Golden, K., & Åström, J. (2023). Physics of the cryosphere. Nature Reviews Physics, 5(8), 446–449. https://doi.org/10.1038/s42254-023-00610-2
  • Bierly, E. W. (1988). The world climate program: Collaboration and communication on a global scale. The ANNALS of the American Academy of Political and Social Science, 495(1), 106–116. https://doi.org/10.1177/0002716288495001010
  • Boccard, N. (2022). Variability and intermittency of renewable energy sources. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4117326
  • Boeker, E., & Grondelle, R. van. (2011). Environmental physics: Sustainable energy and climate change (3rd ed). Wiley.
  • Cai, Y. P., Huang, G. H., Yeh, S. C., Liu, L., & Li, G. C. (2012). A modeling approach for investigating climate change impacts on renewable energy utilization. International Journal of Energy Research, 36(6), 764–777. https://doi.org/10.1002/er.1831
  • Cook, K. H. (2013). Climate dynamics. Princeton University Press.
  • Coscieme, L., Mortensen, L. F., Anderson, S., Ward, J., Donohue, I., & Sutton, P. C. (2020). Going beyond gross domestic product as an indicator to bring coherence to the sustainable development goals. Journal of Cleaner Production, 248, 119232. https://doi.org/10.1016/j.jclepro.2019.119232
  • Cundill, G., Harvey, B., Tebboth, M., Cochrane, L., Currie‐Alder, B., Vincent, K., Lawn, J., Nicholls, Robert. J., Scodanibbio, L., Prakash, A., New, M., Wester, P., Leone, M., Morchain, D., Ludi, E., DeMaria‐Kinney, J., Khan, A., & Landry, M. (2019). Large‐scale transdisciplinary collaboration for adaptation research: Challenges and insights. Global Challenges, 3(4), 1700132. https://doi.org/10.1002/gch2.201700132
  • Fraisl, D., Campbell, J., See, L., Wehn, U., Wardlaw, J., Gold, M., Moorthy, I., Arias, R., Piera, J., Oliver, J. L., Masó, J., Penker, M., & Fritz, S. (2020). Mapping citizen science contributions to the UN sustainable development goals. Sustainability Science, 15(6), 1735–1751. https://doi.org/10.1007/s11625-020-00833-7
  • Gernaat, D. E. H. J., De Boer, H. S., Daioglou, V., Yalew, S. G., Müller, C., & Van Vuuren, D. P. (2021). Climate change impacts on renewable energy supply. Nature Climate Change, 11(2), 119–125. https://doi.org/10.1038/s41558-020-00949-9
  • Gurunathan, K., Murugan, A. V., Marimuthu, R., Mulik, U. P., & Amalnerkar, D. P. (1999). Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Materials Chemistry and Physics, 61(3), 173–191. https://doi.org/10.1016/S0254-0584(99)00081-4
  • Hoffmann, P., & Spekat, A. (2021). Identification of possible dynamical drivers for long-term changes in temperature and rainfall patterns over Europe. Theoretical and Applied Climatology, 143(1–2), 177–191. https://doi.org/10.1007/s00704-020-03373-3
  • Hossain, J., & Mahmud, A. (Eds.). (2014). Renewable energy integration: Challenges and solutions. Springer Singapore. https://doi.org/10.1007/978-981-4585-27-9
  • Hossain, M. S., Madlool, N. A., Rahim, N. A., Selvaraj, J., Pandey, A. K., & Khan, A. F. (2016). Role of smart grid in renewable energy: An overview. Renewable and Sustainable Energy Reviews, 60, 1168–1184.https://doi.org/10.1016/j.rser.2015.09.098
  • Houghton, S. J. (2002). An overview of the intergovernmental panel on climate change (Ipcc) and its process of science assessment. In R. E. Hester & R. M. Harrison (Eds.), Global Environmental Change (pp. 1–20). The Royal Society of Chemistry. https://doi.org/10.1039/9781847550972-00001
  • Hulme, M., Obermeister, N., Randalls, S., & Borie, M. (2018). Framing the challenge of climate change in Nature and Science editorials. Nature Climate Change, 8(6), 515–521. https://doi.org/10.1038/s41558-018-0174-1
  • Hussain, A., Arif, S. M., & Aslam, M. (2017). Emerging renewable and sustainable energy technologies: State of the art. Renewable and Sustainable Energy Reviews, 71, 12–28. https://doi.org/10.1016/j.rser.2016.12.033
  • Hwang, H., An, S., Lee, E., Han, S., & Lee, C. (2021). Cross-societal analysis of climate change awareness and its relation to sdg 13: A knowledge synthesis from text mining. Sustainability, 13(10), 5596. https://doi.org/10.3390/su13105596
  • Iqbal, M., Azam, M., Naeem, M., Khwaja, A. S., & Anpalagan, A. (2014). Optimization classification, algorithms and tools for renewable energy: A review. Renewable and Sustainable Energy Reviews, 39, 640–654. https://doi.org/10.1016/j.rser.2014.07.120
  • Lean, J., & Rind, D. (1998). Climate forcing by changing solar radiation. Journal of Climate, 11(12), 3069–3094. https://doi.org/10.1175/1520-0442(1998)011<3069:CFBCSR>2.0.CO;2
  • Mathevet, R., Bousquet, F., & Raymond, C. M. (2018). The concept of stewardship in sustainability science and conservation biology. Biological Conservation, 217, 363–370. https://doi.org/10.1016/j.biocon.2017.10.015
  • Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012). An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology, 29(7), 897–910. https://doi.org/10.1175/JTECH-D-11-00103.1
  • Nwankwo, W., Ukhurebor, K., & Aigbe, U. (2020). Climate Change and Innovation Technology: A Review. Technology Reports of Kansai University, 63(3), 383–391.
  • Peixóto, J. P., & Oort, A. H. (1984). Physics of climate. Reviews of Modern Physics, 56(3), 365–429. https://doi.org/10.1103/RevModPhys.56.365
  • Reber, C. A., Trevathan, C. E., McNeal, R. J., & Luther, M. R. (1993). The upper atmosphere research satellite (Uars) mission. Journal of Geophysical Research: Atmospheres, 98(D6), 10643–10647. https://doi.org/10.1029/92JD02828
  • Roberts, D. L., Karkanas, P., Jacobs, Z., Marean, C. W., & Roberts, R. G. (2012). Melting ice sheets 400,000 yr ago raised sea level by 13 m: Past analogue for future trends. Earth and Planetary Science Letters, 357, 226–237. https://doi.org/10.1016/j.epsl.2012.09.006
  • Rotberg, R. I., & Rabb, T. K. (Eds.). (1981). Climate and history: Studies in interdisciplinary history. Princeton University Press.
  • Sarker, E., Halder, P., Seyedmahmoudian, M., Jamei, E., Horan, B., Mekhilef, S., & Stojcevski, A. (2021). Progress on the demand side management in smart grid and optimization approaches. International Journal of Energy Research, 45(1), 36–64. https://doi.org/10.1002/er.5631
  • Sarker, E., Seyedmahmoudian, M., Jamei, E., Horan, B., & Stojcevski, A. (2020). Optimal management of home loads with renewable energy integration and demand response strategy. Energy, 210, 118602. https://doi.org/10.1016/j.energy.2020.118602
  • Skoglund, A., Leijon, M., Rehn, A., Lindahl, M., & Waters, R. (2010). On the physics of power, energy and economics of renewable electric energy sources—Part II. Renewable Energy, 35(8), 1735–1740. https://doi.org/10.1016/j.renene.2009.08.031
  • Solaun, K., & Cerdá, E. (2019). Climate change impacts on renewable energy generation. A review of quantitative projections. Renewable and Sustainable Energy Reviews, 116, 109415. https://doi.org/10.1016/j.rser.2019.109415
  • Stamnes, K., Thomas, G. E., & Stamnes, J. J. (2017). Radiative transfer in the atmosphere and ocean (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781316148549
  • Stott, P. (2016). How climate change affects extreme weather events. Science, 352(6293), 1517–1518. https://doi.org/10.1126/science.aaf7271
  • Webster, P. J. (1994). The role of hydrological processes in ocean‐atmosphere interactions. Reviews of Geophysics, 32(4), 427–476. https://doi.org/10.1029/94RG01873 Zohuri, B. (2018). Hybrid energy systems. Springer International Publishing. https://doi.org/10.1007/978-3-319-70721-1

check for update

A Basic Overview of Environment and Sustainable Development [Volume: 2]
A Basic Overview of Environment and Sustainable Development [Volume: 2]

How to Cite
Soumya Chatterjee, Pronoy Mukherjee, Aloke Saha, Koushik Sen, Raju Das, Tanmay Sanyal (2023). Utilizing Climate Physics: Advancing SDG 13 with Integrated Low Carbon Energy from Diverse Sources – A Glimpse Ahead. © International Academic Publishing House (IAPH), Shubhadeep Roychoudhury, Tanmay Sanyal, Koushik Sen & Sudipa Mukherjee Sanyal (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 2], pp. 506-519. ISBN: 978-81-962683-8-1.
DOI: https://doi.org/10.52756/boesd.2023.e02.031

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device

Our Other Books –