Unlocking the Potential: A Comprehensive Review of Environmentally Sustainable Applications for Agro-Based Spent Mushroom Substrate (SMS)

Md. Abu Imran Mallick
Department of Zoology, West Bengal State University, Berunanpukuria, North 24 Parganas –700126, West Bengal, India.
OrchideID Icon https://orcid.org/0000-0002-7510-2920

Rishab Nath
Department of Zoology, Ananda Mohan College, 102/1, Raja Rammohan Sarani, Kolkata-700009,India.

Narayan Ghorai
Department of Zoology, West Bengal State University, Berunanpukuria, North 24 Parganas –700126, West Bengal, India.

Samprita Mishra

Department of Botany, Sidho-Kanho-Birsha University, Purulia.

Aloke Saha
Department of Zoology, University of Kalyani, Kalyani 741235, Nadia, W.B., India.
OrchideID Icon https://orcid.org/0000-0001-9985-3481

Sudipa Mukherjee Sanyal
Hingnara Anchal Public Institution, Ballabhpur, Chakdaha, Nadia 741223, West Bengal.

Published online: 17th December, 2023

DOI: https://doi.org/10.52756/boesd.2023.e02.029

Keywords: Spent Mushroom Substrate (SMS), Agro-waste Utilization, Animal Feedstock, Environmental application, Sustainable agriculture.

Abstract:

Agro-industrial residues represent both a challenge and an opportunity in sustainable agriculture. Spent mushroom substrate (SMS), a byproduct of mushroom cultivation holds immense potential for various environmentally sustainable applications. This review critically examines the current state of knowledge regarding the utilization of SMS in agriculture and related fields. The potential of SMS as a soil amendment to enhance soil fertility and productivity is explored, highlighting its role in improving soil structure, nutrient availability, and microbial diversity. Additionally, the suitability of SMS as a substrate for the cultivation of various crops, including vegetables, ornamentals, and medicinal plants, is evaluated, emphasizing its contribution to sustainable crop production and resource conservation. Furthermore, the utilization of SMS in bioenergy production, bioremediation, and waste management are discussed, underscoring its role in promoting circular economy principles and mitigating environmental pollution. The review also addresses key considerations and challenges associated with the widespread adoption of SMS-based practices, including nutrient management, potential contaminants, and economic feasibility. Moreover, emerging trends and innovative approaches for maximizing the value of SMS are identified, such as its utilization in biopolymer production, nanotechnology applications, and integrated agroecosystem management. The review concludes by highlighting the importance of interdisciplinary collaboration and holistic approaches to harness the full potential of SMS for sustainable agriculture and environmental conservation. Overall, this review provides valuable insights into the diverse applications of SMS and offers recommendations for future research directions and policy interventions to promote its widespread adoption and integration into agroecological systems.

References:

  • Abdel-Aziz, N. A., Salem, A. Z., El-Adawy, M. M., Camacho, L. M., Kholif, A. E., Elghandour, M. M., & Borhami, B. E. (2015). Biological treatments as a mean to improve feed utilization in agriculture animals—An overview. Journal of Integrative Agriculture14(3), 534-543.
  • Adebayo, E. A., & Martinez-Carrera, D. (2015). Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass. African Journal of Biotechnology14(1), 52-67.
  • Adedokun, O. M., & Orluchukwu, J. A. (2013). Pineapple: organic production on soil amended with spent mushroom substrate. Agriculture and Biology Journal of North America4(6), 590-593.
  • Ahlawat, O. P., Gupta, P., Kumar, S., Sharma, D. K., & Ahlawat, K. (2010). Bioremediation of fungicides by spent mushroom substrate and its associated microflora. Indian Journal of Microbiology50, 390-395.
  • Aida, F. M. N. A., Shuhaimi, M., Yazid, M., & Maaruf, A. G. (2009). Mushroom as a potential source of prebiotics: a review. Trends in Food Science & Technology20(11-12), 567-575.
  • Alam, N., Amin, R., Khan, A., Ara, I., Shim, M. J., Lee, M. W., & Lee, T. S. (2008). Nutritional analysis of cultivated mushrooms in Bangladesh–Pleurotus ostreatus, Pleurotus sajorcaju, Pleurotus florida and Calocybe indicaMycobiology36(4), 228-232.
  • Aldoori, Z. T., Al-Obaidi, A. S. A., Abdulkareem, A. H., & Abdullah, M. K. H. (2015). Effect of dietary replacement of barley with mushroom cultivation on carcass characteristics of Awassi lambs. J. Anim. Health Prod.3(4), 94-98.
  • Álvarez-Martín, A., Sánchez-Martín, M. J., Pose-Juan, E., & Rodríguez-Cruz, M. S. (2016). Effect of different rates of spent mushroom substrate on the dissipation and bioavailability of cymoxanil and tebuconazole in an agricultural soil. Science of the Total Environment550, 495-503.
  • Amerah, A. M. (2015). Interactions between wheat characteristics and feed enzyme supplementation in broiler diets. Animal Feed Science and Technology199, 1-9.
  • Amin MZ, Harun A, Wahab MA (2014) Status and potential of mushroom industry in Malaysia. Econ Technol Manag Rev., 9b, 103–111.
  • Andlar, M., Rezić, T., Marđetko, N., Kracher, D., Ludwig, R., & Šantek, B. (2018). Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences18(11), 768-778.
  • Aruya, E. I., Yusuf, R. O., & Yusuf, Y. O. (2016). An assessment of crop residue characteristics and factors militating against efficient management in the Ikara local government area of Kaduna state, Nigeria. Waste Manag Environ VIII1, 333-344.
  • Asada, C., Asakawa, A., Sasaki, C., & Nakamura, Y. (2011). Characterization of the steam-exploded spent Shiitake mushroom medium and its efficient conversion to ethanol. Bioresource Technology102(21), 10052-10056.
  • Asemoloye, M.D., Jonathan, S.G., Jayeola, A.A., & Ahmad, R. (2017). Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq. J. Environ Manag., 200, 253–262
  • Ayala Martínez, M. (2011). Fibrolytic potential of spent compost of the mushroom Agaricus bisporus to degrade forages for ruminants.
  • Azevedo, S., Cunha, L. M., & Fonseca, S. C. (2015). Modelling the influence of time and temperature on the respiration rate of fresh oyster mushrooms. Food Science and Technology International21(8), 593-603.
  • Baek, Y. C., Kim, M. S., Reddy, K. E., Oh, Y. K., Jung, Y. H., Yeo, J. M., & Choi, H. (2017). Rumen fermentation and digestibility of spent mushroom (Pleurotus ostreatus) substrate inoculated with Lactobacillus brevis for Hanwoo steers. Revista Colombiana de Ciencias Pecuarias30(4), 267-277.
  • Banerjee, S., Mitra, S., Velhal, M., Desmukh, V., & Ghosh, B. (2021). Impact of agrochemicals on the environment and human health: The concerns and remedies. Int. J. Exp. Res. Rev., 26, 125-140. https://doi.org/10.52756/ijerr.2021.v26.010
  • Banik, S., & Nandi, R. (2004). Effect of supplementation of rice straw with biogas residual slurry manure on the yield, protein and mineral contents of oyster mushroom. Industrial Crops and Products20(3), 311-319.
  • Barh, A., Upadhyay, R. C., Kamal, S., Annepu, S. K., Sharma, V. P., Shirur, M., & Banyal, S. (2018). Mushroom crop in agricultural waste cleanup. In Microbial Biotechnology in Environmental Monitoring and Cleanup (pp. 252-266). IGI Global.
  • Bernardi, E., Volcão, L. M., de Melo, L. G., & do Nascimento, J. S. (2019). Productivity, biological efficiency and bromatological composition of Pleurotus sajor-caju growth on different substrates in Brazil. Agriculture and Natural Resources53(2), 99-105.
  • Bhattacharyya, S., Chopra, J., Minz, R., Chakraborty, M., Gupta, S., Roy, M., Sarkar, S., Choudhuri, P., & Mukherjee, J. (2020). Spatial variation of valuable bacterial enzymes in soil: A case study from different agro ecological zones of West Bengal, India. Int. J. Exp. Res. Rev., 22, 8-19. https://doi.org/10.52756/ijerr.2020.v22.002
  • Bhupinderpal-Singh, R. Z., & Rengel, Z. (2007). The role of crop residues in improving soil fertility. Nutrient cycling in Terrestrial Ecosystems, Soil Biology10, 183-214.
  • Boontum, A., Phetsom, J., Rodiahwati, W., Kitsubthawee, K., & Kuntothom, T. (2019). Characterization of diluted-acid pretreatment of water hyacinth. Applied Science and Engineering Progress12(4), 253-263.
  • Chancharoonpong, P., Mungkung, R., & Gheewala, S. H. (2021). Life Cycle Assessment and eco-efficiency of high value-added riceberry rice products to support Thailand 4.0 policy decisions. Journal of Cleaner Production292, 126061.
  • Chang, K. L., Chen, X. M., Sun, J., Liu, J. Y., Sun, S. Y., Yang, Z. Y., & Wang, Y. (2017). Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes. Environmental Technology38(13-14), 1765-1769.
  • Chang, S. C., Lin, M. J., Chao, Y. P., Chiang, C. J., Jea, Y. S., & Lee, T. T. (2016). Effects of spent mushroom compost meal on growth performance and meat characteristics of grower geese. Revista Brasileira de Zootecnia45, 281-287.
  • Chang, S. T. (2006). The world mushroom industry: Trends and technological development. International Journal of Medicinal Mushrooms8(4).
  • Chang, S. T., & Wasser, S. P. (2017). The cultivation and environmental impact of mushrooms. In Oxford Research Encyclopedia of Environmental Science.
  • Chiu, S. W., Ching, M. L., Fong, K. L., & Moore, D. (1998). Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycological Research102(12), 1553-1562.
  • Chukwurah, N. F., Eze, S. C., Chiejina, N. V., Onyeonagu, C. C., Ugwuoke, K. I., Ugwu, F. S. O., … & Onwuelughasi, C. U. (2012). Performance of oyster mushroom (Pleurotus ostreatus) in different local agricultural waste materials. African Journal of Biotechnology11(37), 8979-8985.
  • Cragg, S. M., Beckham, G. T., Bruce, N. C., Bugg, T. D., Distel, D. L., Dupree, P., … & Zimmer, M. (2015). Lignocellulose degradation mechanisms across the Tree of Life. Current opinion in Chemical Biology29, 108-119.
  • Dai, Y. C., Yang, Z. L., Cui, B. K., Yu, C. J., & Zhou, L. W. (2009). Species diversity and utilization of medicinal mushrooms and fungi in China. International Journal of Medicinal Mushrooms11(3).
  • Desisa, B., Muleta, D., Dejene, T., Jida, M., Goshu, A., & Martin-Pinto, P. (2023). Substrate Optimization for Shiitake (Lentinula edodes (Berk.) Pegler) Mushroom Production in Ethiopia. Journal of Fungi9(8), 811.
  • Drake, D., Nader, G., & Forero, L. (2002). Feeding rice straw to cattle. UCANR Publications. Eichorst, S. A., & Kuske, C. R. (2012). Identification of cellulose-
  • responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Applied and environmental microbiology78(7), 2316-2327.
  • Embrandiri, A., Ibrahim, M. H., & Singh, R. P. (2013). Palm oil mill wastes utilization; sustainability in the Malaysian context. International Journal of Scientific and Research Publications3(3), 1-7.
  • Falandysz, J. (2013). On published data and methods for selenium in mushrooms. Food Chemistry138(1), 242-250.
  • Fan, S., Wu, X., Fang, Z., Yang, G., Yang, J., Zhong, W., … & Wan, W. (2023). Injectable and ultra-compressible shape-memory mushroom: Highly aligned microtubules for ultra-fast blood absorption and hemostasis. Chemical Engineering Journal460, 140554.
  • Fang, W., Ye, J., Zhang, P., Zhu, X., & Zhou, S. (2017). Solid-state anaerobic fermentation of spent mushroom compost for volatile fatty acids production by pH regulation. International Journal of Hydrogen Energy42(29), 18295-18300.
  • FAO (Food and Agriculture Organization of the United Nations). 2018. http://www.fao.org/faostat/en/#data/QC.
  • Faostat Production database, 2018
  • Fazaeli, H., & Masoodi, A. R. (2006). Spent wheat straw compost of Agaricus bisporus mushroom as ruminant feed. Asian-Australasian Journal of Animal Sciences19(6), 845-851.
  • Fazaeli, H., Shafyee-Varzeneh, H., Farahpoor, A., & Moayyer, A. (2014). Recycling of mushroom compost wheat straw in the diet of feedlot calves with two physical forms. International Journal of Recycling of Organic Waste in Agriculture3, 1-8.
  • Finney, K. N., Ryu, C., Sharifi, V. N., & Swithenbank, J. (2009). The reuse of spent mushroom compost and coal tailings for energy recovery: comparison of thermal treatment technologies. Bioresource Technology100(1), 310-315.
  • Foluke, A., Olutayo, A., & Olufemi, A. (2014). Assessing spent mushroom substrate as a replacement to wheat bran in the diet of broilers. American International Journal of Contemporary Research4(4), 178-83.
  • Fongnzossie, E. F., Nyangono, C. F. B., Biwole, A. B., Ebai, P. N. B., Ndifongwa, N. B., Motove, J., & Dibong, S. D. (2020). Wild edible plants and mushrooms of the Bamenda Highlands in Cameroon: ethnobotanical assessment and potentials for enhancing food security. Journal of Ethnobiology and Ethnomedicine16, 1-10.
  • Food Revolution Network. (2016). Mushrooms Have Stunning Powers to Heal People and the Planet. https://foodrevolution. org/blog/tag/prevent-and-fight-cancer-with-mushrooms.
  • Fortune Business Insights. (2019). Mushroom Market to Grow at a Steady CAGR of 6.41% from 2019 to 2026; Public Sector Investment in Commercial Cultivation of Mushroom to Boost the Market. https://www.fortunebusinessinsights. com/press-release/mushroom-market-9301.
  • Furlani, R. P. Z., & Godoy, H. T. (2008). Vitamins B1 and B2 contents in cultivated mushrooms. Food Chemistry106(2), 816-819.
  • Galaviz-Rodriguez, J. R., Cruz-Monterrosa, R. G., & Vargas-López, S. (2010). Influence of Pleurotus ostreatus spent corn straw on performance and carcass characteristics of feedlot Pelibuey lambs. Indian J. Anim. Sci.80(8), 754-757.
  • Gao, W., Liang, J., Pizzul, L., Feng, X. M., Zhang, K., & del Pilar Castillo, M. (2015). Evaluation of spent mushroom substrate as substitute of peat in Chinese biobeds. International Biodeterioration & Biodegradation98, 107-112.
  • García-Delgado, C., Alonso-Izquierdo, M., González-Izquierdo, M., Yunta, F., & Eymar, E. (2017). Purification of polluted water with spent mushroom (Agaricus bisporus) substrate: from agricultural waste to biosorbent of phenanthrene, Cd and Pb. Environmental Technology38(13-14), 1792-1799.
  • Ghose, A., & Mitra, S. (2022). Spent waste from edible mushrooms offers innovative strategies for the remediation of persistent organic micropollutants: A review. Environmental Pollution305, 119285.
  • Gimeno, A., Al Alami, A., Toral, P. G., Frutos, P., Abecia, L., Fondevila, M., & Castrillo, C. (2015). Effect of grinding or pelleting high grain maize-or barley-based concentrates on rumen environment and microbiota of beef cattle. Animal Feed Science and Technology203, 67-78.
  • Grujić, M., Dojnov, B., Potočnik, I., Duduk, B., & Vujčić, Z. (2015). Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation. International Biodeterioration & Biodegradation104, 290-298.
  • Hajdú, P., Abdalla, Z. F., El-Ramady, H., & Prokisch, J. (2022). Edible Mushroom of Lentinula spp.: A Case Study of Shiitake (Lentinula edodes L.) Cultivation. Environment, Biodiversity and Soil Security6(2022), 41-49.
  • Harith, N., Abdullah, N., & Sabaratnam, V. (2014). Cultivation of Flammulina velutipes mushroom using various agro-residues as a fruiting substrate. Pesquisa Agropecuária Brasileira49, 181-188.
  • Hawksworth, D. L. (2012). Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodiversity and Conservation21, 2425-2433.
  • Herrero-Hernández, E., Andrades, M. S., Rodríguez-Cruz, M. S., & Sánchez-Martín, M. J. (2011). Effect of spent mushroom substrate applied to vineyard soil on the behaviour of copper-based fungicide residues. Journal of Environmental Management92(7), 1849-1857.
  • Hou, D., Bolan, N. S., Tsang, D. C., Kirkham, M. B., & O’Connor, D. (2020). Sustainable soil use and management: An interdisciplinary and systematic approach. Science of the Total Environment729, 138961.
  • Hu, B. B., & Zhu, M. J. (2017). Enhanced hydrogen production and biological saccharification from spent mushroom compost by Clostridium thermocellum 27405 supplemented with recombinant β-glucosidases. international Journal of Hydrogen Energy42(12), 7866-7874.
  • Huang, J., Xiao, L., Yi, Y., Li, B., Sun, R., & Deng, H. (2022). Preservation mechanism and flavor variation of postharvest button mushroom (Agaricus bisporus) coated compounds of protocatechuic acid-CaCl2-NaCl-pullulan. LWT169, 114020.
  • Ignatius, S., Endang, K., Elok, Z., Susana, R., Ira, N., Alvin, A., … & Bo-Bo, Z. (2021). Utilization of agro-industrial by-products in Monascus fermentation: a review. Bioresources and Bioprocessing8(1).
  • Ishara, J. R., Sila, D. N., & Kenji, G. M. (2018). Edible mushroom: new food fortification approach toward food security. LAP Lambert Academic Publishing.
  • Islam, M. Z., Rahman, M. H., & Hafiz, F. (2009). Cultivation of oyster mushroom (Pleurotus flabellatus) on different substrates. International Journal of Sustainable Crop Production4(1), 45-48.
  • Jami, E., & Mizrahi, I. (2012). Composition and similarity of bovine rumen microbiota across individual animals. PloS one7(3), e33306.
  • Jasiūnas, L., Pedersen, T. H., Toor, S. S., & Rosendahl, L. A. (2017). Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust. Renewable Energy111, 392-398.
  • Jayakumar, T., Thomas, P. A., Sheu, J. R., & Geraldine, P. (2011). In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food Research International44(4), 851-861.
  • Jiang, H., Zhang, M., Chen, J., Li, S., Shao, Y., Yang, J., & Li, J. (2017). Characteristics of bio-oil produced by the pyrolysis of mixed oil shale semi-coke and spent mushroom substrate. Fuel200, 218-224.
  • Jin, Y., Teng, C., Yu, S., Song, T., Dong, L., Liang, J., … & Qu, J. (2018). Batch and fixed-bed biosorption of Cd (II) from aqueous solution using immobilized Pleurotus ostreatus spent substrate. Chemosphere191, 799-808.
  • Kalac, P. (2016). Edible mushrooms: chemical composition and nutritional value. Academic Press.
  • Kamthan, R., & Tiwari, I. (2017). Agricultural wastes-potential substrates for mushroom cultivation. European Journal of Experimental Biology7(5), 31.
  • Kapu, N. U. S., Manning, M., Hurley, T. B., Voigt, J., Cosgrove, D. J., & Romaine, C. P. (2012). Surfactant-assisted pretreatment and enzymatic hydrolysis of spent mushroom compost for the production of sugars. Bioresource Technology114, 399-405.
  • Karas, P. A., Makri, S., Papadopoulou, E. S., Ehaliotis, C., Menkissoglu-Spiroudi, U., & Karpouzas, D. G. (2016). The potential of organic substrates based on mushroom substrate and straw to dissipate fungicides contained in effluents from the fruit-packaging industry–Is there a role for Pleurotus ostreatus? Ecotoxicology and Environmental Safety124, 447-454.
  • Khouzani, M. R. Z., & Ghahfarokhi, Z. D. (2022). Evaluation of Agricultural Waste Management Mechanism in Iran. Industrial and Domestic Waste Management2(2), 113-124.
  • Kim, H., & Song, M. J. (2014). Analysis of traditional knowledge for wild edible mushrooms consumed by residents living in Jirisan National Park (Korea). Journal of Ethnopharmacology153(1), 90-97.
  • Kim, S. P., Kang, M. Y., Kim, J. H., Nam, S. H., & Friedman, M. (2011). Composition and mechanism of antitumor effects of Hericium erinaceus mushroom extracts in tumor-bearing mice. Journal of Agricultural and Food Chemistry59(18), 9861-9869.
  • Kim, Y. I., Cho, W. M., Hong, S. K., Oh, Y. K., & Kwak, W. S. (2011). Yield, nutrient characteristics, ruminal solubility and degradability of spent mushroom (Agaricus bisporus) substrates for ruminants. Asian-Australasian Journal of Animal Sciences24(11), 1560-1568.
  • Kim, Y. I., Lee, Y. H., Kim, K. H., Oh, Y. K., Moon, Y. H., & Kwak, W. S. (2012). Effects of supplementing microbially-fermented spent mushroom substrates on growth performance and carcass characteristics of Hanwoo steers (a field study). Asian-Australasian Journal of Animal Sciences25(11), 1575.
  • Kim, Y. I., Park, J. M., Lee, Y. H., Lee, M., Choi, D. Y., & Kwak, W. S. (2015). Effect of by-product feed-based silage feeding on the performance, blood metabolites, and carcass characteristics of Hanwoo steers (a field study). Asian-Australasian Journal of Animal Sciences28(2), 180.
  • Kivaisi, A. K., Assefa, B., Hashim, S. O., & Mshandete, A. M. (2010). Sustainable utilization of agro-industrial wastes through integration of bio-energy and mushroom production.
  • Kumar, P., Kumar, V., Eid, E. M., Al-Huqail, A. A., Adelodun, B., Abou Fayssal, S., … & Širić, I. (2022). Spatial assessment of potentially toxic elements (PTE) concentration in Agaricus bisporus mushroom collected from local vegetable markets of Uttarakhand state, India. Journal of Fungi8(5), 452.
  • Kumla, J., Suwannarach, N., Sujarit, K., Penkhrue, W., Kakumyan, P., Jatuwong, K., … & Lumyong, S. (2020). Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules25(12), 2811.
  • Kwak, W. S., Jung, S. H., & Kim, Y. I. (2008). Broiler litter supplementation improves storage and feed-nutritional value of sawdust-based spent mushroom substrate. Bioresource Technology99(8), 2947-2955.
  • Kwak, W. S., Kim, Y. I., Seok, J. S., Oh, Y. K., & Lee, S. M. (2009). Molasses and microbial inoculants improve fermentability and silage quality of cotton waste-based spent mushroom substrate. Bioresource technology100(3), 1471-1473.
  • Lee, C. Y., Park, J. E., Kim, B. B., Kim, S. M., & Ro, H. S. (2009). Determination of mineral components in the cultivation substrates of edible mushrooms and their uptake into fruiting bodies. Mycobiology37(2), 109-113.
  • Lee, J., Feng, J., Campbell, K. B., Scheffler, B. E., Garrett, W. M., Thibivilliers, S., … & Cooper, B. (2009). Quantitative proteomic analysis of bean plants infected by a virulent and avirulent obligate rust fungus. Molecular & cellular proteomics8(1), 19-31.
  • Lee, S., Park, J. Y., Lee, D., Seok, S., Kwon, Y. J., Jang, T. S., … & Kim, K. H. (2017). Chemical constituents from the rare mushroom Calvatia nipponica inhibit the promotion of angiogenesis in HUVECs. Bioorganic & Medicinal Chemistry Letters27(17), 4122-4127.
  • Leong, Y. K., Ma, T. W., Chang, J. S., & Yang, F. C. (2022). Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review. Bioresource Technology344, 126157.
  • Li, H., Tian, Y., Menolli Jr, N., Ye, L., Karunarathna, S. C., Perez‐Moreno, J., … & Mortimer, P. E. (2021). Reviewing the world’s edible mushroom species: A new evidence‐based classification system. Comprehensive Reviews in Food Science and Food Safety20(2), 1982-2014.
  • Li, Y. (2012). Present development situation and tendency of edible mushroom industry in China. Mushroom Sci18(1), 3-9.
  • Liang, C. H., Lee, Y. L., Kuo, H. C., Wu, T. P., Jian, S. Y., & Huang, W. L. (2009). Preparation of novel culinary-medicinal mushroom products using solid-state fermentation and their taste quality. International Journal of Medicinal Mushrooms11(2).
  • Lim, S. H., Lee, Y. H., & Kang, H. W. (2013). Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization. Mycobiology41(4), 214-220.
  • Lin, H. N., Hu, B. B., & Zhu, M. J. (2016). Enhanced hydrogen production and sugar accumulation from spent mushroom compost by Clostridium thermocellum supplemented with PEG8000 and JFC-E. International Journal of Hydrogen Energy41(4), 2383-2390.
  • Lin, Y., Ge, X., & Li, Y. (2014). Solid-state anaerobic co-digestion of spent mushroom substrate with yard trimmings and wheat straw for biogas production. Bioresource Technology169, 468-474.
  • Liu, M., Song, X., Zhang, J., Zhang, C., Gao, Z., Li, S., … & Jia, L. (2017). Protective effects on liver, kidney and pancreas of enzymatic-and acidic-hydrolysis of polysaccharides by spent mushroom compost (Hypsizigus marmoreus). Scientific reports7(1), 43212.
  • Liu, X., Bai, X., Dong, L., Liang, J., Jin, Y., Wei, Y., … & Qu, J. (2018). Composting enhances the removal of lead ions in aqueous solution by spent mushroom substrate: biosorption and precipitation. Journal of Cleaner Production200, 1-11.
  • Liu, Y., Ma, R., Li, D., Qi, C., Han, L., Chen, M., … & Li, G. (2020). Effects of calcium magnesium phosphate fertilizer, biochar and spent mushroom substrate on compost maturity and gaseous emissions during pig manure composting. Journal of Environmental Management267, 110649.
  • Liu, Y., Zhao, C., Lin, D., Lin, H., & Lin, Z. (2015). Effect of water extract from spent mushroom substrate after G anoderma balabacense cultivation by using JUNCAO technique on production performance and hematology parameters of dairy cows. Animal Science Journal86(9), 855-862.
  • Loehr, R. (2012). Pollution control for agriculture. Elsevier.
  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic acids research42(D1), D490-D495.
  • Lopes, R. X., Zied, D. C., Martos, E. T., de Souza, R. J., Da Silva, R., & Dias, E. S. (2015). Application of spent Agaricus subrufescens compost in integrated production of seedlings and plants of tomato. International Journal of Recycling of Organic Waste in Agriculture4, 211-218.
  • López-Mondéjar, R., Zühlke, D., Becher, D., Riedel, K., & Baldrian, P. (2016). Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports6(1), 25279.
  • Lou, Z., Sun, Y., Bian, S., Baig, S. A., Hu, B., & Xu, X. (2017). Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar. Chemosphere169, 23-31.
  • Lou, Z., Sun, Y., Zhou, X., Baig, S. A., Hu, B., & Xu, X. (2017). Composition variability of spent mushroom substrates during continuous cultivation, composting process and their effects on mineral nitrogen transformation in soil. Geoderma307, 30-37.
  • Lou, Z., Zhu, J., Wang, Z., Baig, S. A., Fang, L., Hu, B., & Xu, X. (2015). Release characteristics and control of nitrogen, phosphate, organic matter from spent mushroom compost amended soil in a column experiment. Process Safety and Environmental Protection98, 417-423.
  • Luo, X., Yuan, X., Wang, S., Sun, F., Hou, Z., Hu, Q., … & Zou, Y. (2018). Methane production and characteristics of the microbial community in the co-digestion of spent mushroom substrate with dairy manure. Bioresource Technology250, 611-620.
  • Machado, K. M., Compart, L. C., Morais, R. O., Rosa, L. H., & Santos, M. H. (2006). Biodegradation of reactive textile dyes by basidiomycetous fungi from Brazilian ecosystems. Brazilian Journal of Microbiology37, 481-487.
  • Madeira Jr, J. V., Contesini, F. J., Calzado, F., Rubio, M. V., Zubieta, M. P., Lopes, D. B., & de Melo, R. R. (2017). Agro-industrial residues and microbial enzymes: an overview on the eco-friendly bioconversion into high value-added products. Biotechnology of Microbial Enzymes, 475-511.
  • Mahesh, M. S., & Mohini, M. (2013). Biological treatment of crop residues for ruminant feeding: A review. African Journal of Biotechnology12(27).
  • Marlina, L., Sukotjo, S., & Marsudi, S. (2015). Potential of oil palm empty fruit bunch (EFB) as media for oyster mushroom, Pleurotus ostreatus cultivation. Procedia Chemistry16, 427-431.
  • Medina, E., Paredes, C., Pérez-Murcia, M. D., Bustamante, M. A., & Moral, R. (2009). Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresource Technology100(18), 4227-4232.
  • Melo.de Carvalho, C. S., Sales-Campos, C., & de Andrade, M. C. N. (2010). Mushrooms of the Pleurotus genus: a review of cultivation techniques. Interciencia35(3), 177-182.
  • Meng, L., Li, W., Zhang, S., Wu, C., & Lv, L. (2017). Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw. Bioresource Technology226, 39-45.
  • Meng, X., Liu, B., Xi, C., Luo, X., Yuan, X., Wang, X., … & Cui, Z. (2018). Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks. Bioresource Technology251, 22-30.
  • Mohd Hanafi, F. H., Rezania, S., Mat Taib, S., Md Din, M. F., Yamauchi, M., Sakamoto, M., … & Ebrahimi, S. S. (2018). Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview. Journal of Material Cycles and Waste Management20, 1383-1396.
  • Moon, Y. H., Shin, P. G., & Cho, S. J. (2012). Feeding value of spent mushroom (Pleurotus eryngii) substrate. Journal of Mushroom10(4), 236-243.
  • Moonmoon, M., Uddin, M. N., Ahmed, S., Shelly, N. J., & Khan, M. A. (2010). Cultivation of different strains of king oyster mushroom (Pleurotus eryngii) on saw dust and rice straw in Bangladesh. Saudi Journal of Biological Sciences17(4), 341-345.
  • Mukherjee, R., & Nandi, B. (2004). Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. International biodeterioration & Biodegradation53(1), 7-12.
  • Murugesan, S. (2017). Sustainable food security: edible and medicinal mushroom. Sustainable Agriculture towards Food Security, 185-196.
  • Najafi, B., & Ardabili, S. F. (2018). Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC). Resources, Conservation and Recycling133, 169-178.
  • Nakajima, V. M., de Freitas Soares, F. E., & de Queiroz, J. H. (2018). Screening and decolorizing potential of enzymes from spent mushroom composts of six different mushrooms. Biocatalysis and Agricultural Biotechnology13, 58-61.
  • Nakatsuka, H., Oda, M., Hayashi, Y., & Tamura, K. (2016). Effects of fresh spent mushroom substrate of Pleurotus ostreatus on soil micromorphology in Brazil. Geoderma269, 54-60.
  • Naraian, R., Sahu, R. K., Kumar, S., Garg, S. K., Singh, C. S., & Kanaujia, R. S. (2009). Influence of different nitrogen rich supplements during cultivation of Pleurotus florida on corn cob substrate. The Environmentalist29, 1-7.
  • Orluchukwu, J. A., Mac-Aboh, A. R., & Omovbude, S. (2016). Effect of different rates of spent mushroom substrate on the growth and yield of fluted pumpkin (Telfaira occidentalis HOOK. F) in South-South, Nigeria. Nat Sci.14, 40-44.
  • Owaid, M. N., Abed, I. A., & Al-Saeedi, S. S. S. (2017). Applicable properties of the bio-fertilizer spent mushroom substrate in organic systems as a byproduct from the cultivation of Pleurotus spp. Information Processing in Agriculture4(1), 78-82.
  • Pala, S. A., Wani, A. H., & Mir, R. A. (2012). Yield performance of Pleurotus sajor-caju on different agro-based wastes. Annals of Biological Research3(4), 1938-1941.
  • Pandey, V. V., Kumari, A., Kumar, M., Saxena, J., Kainthola, C., & Pandey, A. (2018). Mushroom cultivation: Substantial key to food security. Journal of Applied and Natural Science10(4), 1325-1331.
  • Pant, D., Reddy, U. G., & Adholeya, A. (2006). Cultivation of oyster mushrooms on wheat straw and bagasse substrate amended with distillery effluent. World Journal of Microbiology and Biotechnology22, 267-275.
  • Paredes, C., Medina, E., Bustamante, M. A., & Moral, R. (2016). Effects of spent mushroom substrates and inorganic fertilizer on the characteristics of a calcareous clayey‐loam soil and lettuce production. Soil Use and Management32(4), 487-494.
  • Paredes, C., Medina, E., Bustamante, M. A., & Moral, R. (2016). Effects of spent mushroom substrates and inorganic fertilizer on the characteristics of a calcareous clayey‐loam soil and lettuce production. Soil Use and Management32(4), 487-494.
  • Park, J. H., Kim, S. W., Do, Y. J., Kim, H., Ko, Y. G., Yang, B. S., … & Cho, Y. M. (2012). Spent mushroom substrate influences elk (Cervus elaphus canadensis) hematological and serum biochemical parameters. Asian-Australasian Journal of Animal Sciences25(3), 320.
  • Paula, F. S., Tatti, E., Abram, F., Wilson, J., & O’Flaherty, V. (2017). Stabilisation of spent mushroom substrate for application as a plant growth-promoting organic amendment. Journal of Environmental Management196, 476-486.
  • Phan, C. W., & Sabaratnam, V. (2012). Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Applied Microbiology and Biotechnology96, 863-873.
  • Porselvi, A., & Vijayakumar, R. (2019). Evaluation of paddy straw varieties on the cultivation and nutritional value of two oyster mushroom species. International Journal of Research in Advent Technology7(5), 556-563.
  • Purnomo, A. S., Mori, T., Kamei, I., Nishii, T., & Kondo, R. (2010). Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. International Biodeterioration & Biodegradation64(5), 397-402.
  • Qiao, J. J., Zhang, Y. F., Sun, L. F., Liu, W. W., Zhu, H. J., & Zhang, Z. (2011). Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment. Bioresource Technology102(17), 8046-8051.
  • Randive, S. D. (2012). Cultivation and study of growth of oyster mushroom on different agricultural waste substrate and its nutrient analysis. Advances in Applied Science Research3(4), 1938-1949.
  • Rangubhet, K. T., Mangwe, M. C., Mlambo, V., Fan, Y. K., & Chiang, H. I. (2017). Enteric methane emissions and protozoa populations in Holstein steers fed spent mushroom (Flammulina velutipes) substrate silage-based diets. Animal Feed Science and Technology234, 78-87.
  • Rasib, Abd. N. A., Zakaria, Z., Tompang, M. F., Abdul Rahman, R., & Othman, H. (2015). Characterization of biochemical composition for different types of spent mushroom substrate in Malaysia. Malays. J. Anal. Sci.19(1), 41-45.
  • Reis, F. S., Barros, L., Martins, A., & Ferreira, I. C. (2012). Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food and Chemical Toxicology50(2), 191-197.
  • Rezaei, J., Rouzbehan, Y., Zahedifar, M., & Fazaeli, H. (2015). Effects of dietary substitution of maize silage by amaranth silage on feed intake, digestibility, microbial nitrogen, blood parameters, milk production and nitrogen retention in lactating Holstein cows. Animal Feed Science and Technology202, 32-41.
  • Rezania, S., Din, M. F. M., Taib, S. M., Sohaili, J., Chelliapan, S., Kamyab, H., & Saha, B. B. (2017). Review on fermentative biohydrogen production from water hyacinth, wheat straw and rice straw with focus on recent perspectives. International Journal of Hydrogen Energy42(33), 20955-20969.
  • Royse, D. J., Baars, J., & Tan, Q. (2017). Current overview of mushroom production in the world. Edible and medicinal mushrooms: technology and applications, 5-13.
  • Ryden, P., Efthymiou, M. N., Tindyebwa, T. A., Elliston, A., Wilson, D. R., Waldron, K. W., & Malakar, P. K. (2017). Bioethanol production from spent mushroom compost derived from chaff of millet and sorghum. Biotechnology for Biofuels10(1), 1-11.
  • Saba, M., Falandysz, J., & Nnorom, I. C. (2016). Mercury bioaccumulation by Suillus bovinus mushroom and probable dietary intake with the mushroom meal. Environmental Science and Pollution Research23, 14549-14559.
  • Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing5(1), 1-15.
  • Saha, A. (2023). Circular economy strategies for sustainable waste management in the food industry. Journal of Recycling Economy & Sustainability Policy, 2(2), 1–16. https://respjournal.com/index.php/pub/article/view/17
  • Saha, A., & Khatua, S. (2024). Hypolipidemic and cholesterol-lowering effects of ganoderma. In K. Acharya & S. Khatua, Ganoderma (1st ed., pp. 189–214). CRC Press. https://doi.org/10.1201/9781003354789-11
  • Saha, A., Samadder, A., & Nandi, S. (2022). Stem cell therapy in combination with naturopathy: Current progressive management of diabetes and associated complications. Current Topics in Medicinal Chemistry, 23(8), 649–689. https://doi.org/10.2174/1568026623666221201150933
  • Sardar, H., Ali, M. A., Anjum, M. A., Nawaz, F., Hussain, S., Naz, S., & Karimi, S. M. (2017). Agro-industrial residues influence mineral elements accumulation and nutritional composition of king oyster mushroom (Pleurotus eryngii). Scientia Horticulturae225, 327-334.
  • Sarkar, S., Mahra, G. S., Lenin, V., Padaria, R. N., & Burman, R. R. (2022). Innovative Extension Approaches for Diffusion of Nutrient Management Technologies. Soil Management for Sustainable Agriculture: New Research and Strategies, 283.
  • Sarkar, S., Skalicky, M., Hossain, A., Brestic, M., Saha, S., Garai, S., …& Brahmachari, K. (2020). Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability12(23), 9808.
  • Sarnklong, C., Cone, J. W., Pellikaan, W., & Hendriks, W. H. (2010). Utilization of rice straw and different treatments to improve its feed value for ruminants: a review. Asian-Australasian Journal of Animal Sciences23(5), 680-692.
  • Sendi, H., Mohamed, M. T. M., Anwar, M. P., & Saud, H. M. (2013). Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. Alboglabra) production. The Scientific World Journal2013.
  • Sewu, D. D., Boakye, P., Jung, H., & Woo, S. H. (2017). Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonicaBioresource technology244, 1142-1149.
  • Shitole, A. V., Gade, R. M., Bandgar, M. S., Wavare, S. H., & Belkar, Y. K. (2014). Utilization of spent mushroom substrate as carrier for biocontrol agent and biofertilizer. The Bioscan9(1), 271-275.
  • Singh, M. P., & Singh, V. K. (2012). Biodegradation of vegetable and agrowastes by Pleurotus sapidus: a novel strategy to produce mushroom with enhanced yield and nutrition. Cellular and Molecular Biology58(1), 1-7.
  • Singh, M., Vijay, B., Kamal, S., & Wakchaure, G. C. (2011). Mushrooms: cultivation, marketing and consumption. Mushrooms: cultivation, marketing and consumption.
  • Song, X., Liu, M., Wu, D., Qi, L., Ye, C., Jiao, J., & Hu, F. (2014). Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Management34(11), 1977-1983.
  • Song, Y. M., Lee, S. D., Chowdappa, R., Kim, H. Y., Jin, S. K., & Kim, I. S. (2007). Effects of fermented oyster mushroom (Pleurotus ostreats) by-product supplementation on growth performance, blood parameters and meat quality in finishing Berkshire pigs. Animal1(2), 301-307.
  • Stamets, P. (2011). Growing gourmet and medicinal mushrooms. Ten speed press.
  • Sustainable Developments Goals, United Nations. 2020. https://www.un.org/sustainable development/hunger/.
  • Tasaki, Y., Sato, R., Toyama, S., Kasahara, K., Ona, Y., & Sugawara, M. (2013). Cloning of glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycete mushroom Pleurotus ostreatus and analysis of their expression during fruit-body development. Mycoscience55(4), 280-288.
  • The Guardian. (2009). World faces ‘perfect storm’ of problems by 2030, chief scientist to warn. https:// www. theguardian.com/science/2009/ mar/18 /perfectstorm-johnbeddington-energy-food-climate.
  • The Guardian. (2011). Paul Ehrlich, a prophet of global population doom who is gloomier than ever. https://www.the guardian.com/environment/2011/oct/23/paul-ehrlich.
  • Thiribhuvanamala, G., Krishnamoorthy, S., Manoranjitham, K., Praksasm, V., & Krishnan, S. (2012). Improved techniques to enhance the yield of paddy straw mushroom (Volvariella volvacea) for commercial cultivation. African Journal of Biotechnology11(64), 12740-12748.
  • Toptas, A., Demierege, S., Mavioglu Ayan, E., & Yanik, J. (2014). Spent mushroom compost as biosorbent for dye biosorption. CLEAN–Soil, Air, Water42(12), 1721-1728.
  • Treuer, T. L., Choi, J. J., Janzen, D. H., Hallwachs, W., Peréz‐Aviles, D., Dobson, A. P., … & Wilcove, D. S. (2018). Low‐cost agricultural waste accelerates tropical forest regeneration. Restoration Ecology26(2), 275-283.
  • Tsa, C., Yi, C., Man, D., Wang, J., Feng, M., & Feng, S. (2023). Labeling and framing effects in the willingness to purchase upcycled food.
  • Tuhy, Ł., Samoraj, M., Witkowska, Z., Wilk, R., & Chojnacka, K. (2015). Using spent mushroom substrate as the base for organic-mineral micronutrient fertilizer–field tests on maize. BioResources10(3), 5709-5719.
  • United States International Trade Commission (USITC). 2010. Mushroom Industry and Trade Summary. https://www.usitc. gov/publications/332/ITS_7.pdf.
  • Van Doan, H., Hoseinifar, S. H., Dawood, M. A., Chitmanat, C., & Tayyamath, K. (2017). Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus). Fish & shellfish Immunology70, 87-94.
  • Van Kuijk, S. J. A., Sonnenberg, A. S. M., Baars, J. J. P., Hendriks, W. H., & Cone, J. W. (2015). Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnology Advances33(1), 191-202.
  • Van Zuydam, I. B. (2021). The impact of climate change on livestock farming in Eswatini: a modelling and participatory approach to adaptation (Doctoral dissertation).
  • Vetayasuporn, S. (2006). Oyster mushroom cultivation on different cellulosic substrates. Res J Agric. Biol. Sci.2(6), 548-551.
  • Wang, J. H., Xu, J. L., Zhang, J. C., Liu, Y., Sun, H. J., & Zha, X. (2015). Physicochemical properties and antioxidant activities of polysaccharide from floral mushroom cultivated in Huangshan Mountain. Carbohydrate Polymers131, 240-247.
  • WHO. (2012). Trade, foreign policy, diplomacy, and health: glossary of globalization, trade and health terms. Geneva. http://www.who.int/trade/glossary/story028/en/.
  • Williams, B. C., McMullan, J. T., & McCahey, S. (2001). An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresource Technology79(3), 227-230.
  • Wu, S. R., Zhao, C. Y., Hou, B., Tai, L. M., & Gui, M. Y. (2013). Analysis on Chinese edible fungus production area layout of nearly five years. Edible Fungi China1, 51-53.
  • Wu, S., Lan, Y., Wu, Z., Peng, Y., Chen, S., Huang, Z., … & Zou, S. (2013). Pretreatment of spent mushroom substrate for enhancing the conversion of fermentable sugar. Bioresource Technology148, 596-600.
  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., … & Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. Science of the Total Environment424, 1-10.
  • Xu, X., Yan, H., Chen, J., & Zhang, X. (2011). Bioactive proteins from mushrooms. Biotechnology Advances29(6), 667-674.
  • Yadav, P., & Samadder, S. R. (2018). A critical review of the life cycle assessment studies on solid waste management in Asian countries. Journal of Cleaner Production185, 492-515.
  • Yan, T., & Wang, L. (2013). Adsorptive removal of methylene blue from aqueous solution by spent mushroom substrate: equilibrium, kinetics, and thermodynamics. BioResources8(3), 4722-4734.
  • Yang, D., Liang, J., Wang, Y., Sun, F., Tao, H., Xu, Q., … & Wan, X. (2016). Tea waste: an effective and economic substrate for oyster mushroom cultivation. Journal of the Science of Food and Agriculture96(2), 680-684.
  • Yang, S., Yan, J., Yang, L., Meng, Y., Wang, N., He, C., … & Zhou, Y. (2019). Alkali-soluble polysaccharides from mushroom fruiting bodies improve insulin resistance. International Journal of Biological Macromolecules126, 466-474.
  • Yang, Y., Tao, X., Lin, E., & Hu, K. (2017). Enhanced nitrogen removal with spent mushroom compost in a sequencing batch reactor. Bioresource Technology244, 897-904.
  • Youssef, M. S., Ahmed, S. I., & Abd-El-Kareem, M. M. (2023). Nutrition analysis, antimicrobial, and antioxidant activities of cultivated Pleurotus floridanus as an edible mushroom on different substrates. Sohag Journal of Sciences9(1), 56-63.
  • Yuan, W., Jiang, C., Wang, Q., Fang, Y., Wang, J., Wang, M., & Xiao, H. (2022). Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast. Nature Communications13(1), 7740.
  • Zang, T., Cheng, Z., Lu, L., Jin, Y., Xu, X., Ding, W., & Qu, J. (2017). Removal of Cr (VI) by modified and immobilized Auricularia auricula spent substrate in a fixed-bed column. Ecological Engineering99, 358-365.
  • Zhang, B., Tan, G., Zhong, Z., & Ruan, R. (2017). Microwave-assisted catalytic fast pyrolysis of spent edible mushroom substrate for bio-oil production using surface modified zeolite catalyst. Journal of Analytical and Applied Pyrolysis123, 92-98.
  • Zhang, C. K., Gong, F., & Li, D. S. (1995). A note on the utilisation of spent mushroom composts in animal feeds. Bioresource Technology52(1), 89-91.
  • Zhang, R. H., Zeng-Qiang, D. U. A. N., & Zhi-Guo, L. I. (2012). Use of spent mushroom substrate as growing media for tomato and cucumber seedlings. Pedosphere22(3), 333-342.
  • Zhou, A., Du, J., Varrone, C., Wang, Y., Wang, A., & Liu, W. (2014). VFAs bioproduction from waste activated sludge by coupling pretreatments with Agaricus bisporus substrates conditioning. Process Biochemistry49(2), 283-289.
  • Zhu, H. J., Liu, J. H., Sun, L. F., Hu, Z. F., & Qiao, J. J. (2013). Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production. Bioresource Technology136, 257-266.
  • Zhu, H. J., Sun, L. F., Zhang, Y. F., Zhang, X. L., & Qiao, J. J. (2012). Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7. Bioresource Technology111, 410-416.
  • Zhu, H., Sheng, K., Yan, E., Qiao, J., & Lv, F. (2012). Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. International Journal of Biological Macromolecules50(3), 840-843.
  • Zhu, Y., Chang, Y., Guan, J., Shanguan, G., & Xin, F. (2016). Butanol production from organosolv treated spent mushroom substrate integrated with in situ biodiesel extraction. Renewable Energy96, 656-661.
  • Zisopoulos, F. K., Ramírez, H. A. B., van der Goot, A. J., & Boom, R. M. (2016). A resource efficiency assessment of the industrial mushroom production chain: The influence of data variability. Journal of Cleaner Production126, 394-408.

check for update

A Basic Overview of Environment and Sustainable Development [Volume: 2]
A Basic Overview of Environment and Sustainable Development [Volume: 2]

How to Cite
Md. Abu Imran Mallick, Rishab Nath, Narayan Ghorai, Samprita Mishra, Aloke Saha, Sudipa Mukherjee Sanyal (2023). Unlocking the Potential: A Comprehensive Review of Environmentally Sustainable Applications for Agro-Based Spent Mushroom Substrate (SMS). © International Academic Publishing House (IAPH), Shubhadeep Roychoudhury, Tanmay Sanyal, Koushik Sen & Sudipa Mukherjee Sanyal (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 2], pp. 434-477. ISBN: 978-81-962683-8-1.
DOI: https://doi.org/10.52756/boesd.2023.e02.029

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device

Our Other Books –