Integration of artificial intelligence toward better agricultural sustainability

Mayuri Bhagawati
1Department of Botany, Tripura University (A Central University) Suryamaninagar – 799022, Tripura.
OrchideID Icon https://orcid.org/0000-0003-3940-6828

Chayan Dhar
1Department of Botany, Tripura University (A Central University) Suryamaninagar – 799022, Tripura.

Dipan Sarma
1Department of Botany, Tripura University (A Central University) Suryamaninagar – 799022, Tripura
2Department of Botany, Govt. Degree College, Dharmanagar-799253, Tripura.
OrchideID Icon https://orcid.org/0000-0002-5643-6327

Manna Das
2Department of Botany, Govt. Degree College, Dharmanagar-799253, Tripura.

Badal Kumar Datta
1Department of Botany, Tripura University (A Central University) Suryamaninagar – 799022, Tripura.

Published online: 27th May, 2024

DOI: https://doi.org/10.52756/bhstiid.2024.e01.005

Keywords: Agriculture, Artificial Intelligence (AI), Sustainability, Agroecology, Agribots.

Abstract:

The development and even survival of human civilization is highly dependent on agriculture. Modern human society, with a vast population, is continuously pressurizing agricultural techniques to modify themselves in a way that satisfies the hunger of this rapidly growing population. To ensure food security, several methods and chemical inputs have been applied in the field of farming which disturb their average ecological balance, reduce the nutrient content in the food, affect the average fertility of the soil, cause overexploitation of the natural resources, and even responsible for various fatal health issues in humans. Thus, an alternative resolution is needed, which is Artificial Intelligence. Integration of AI has proved to be a boon for the present-day farmers. AI eases farming practices by monitoring crop health, predicting pests, diseases, drought, weather forecasting, harvesting, categorizing harvested ones, aiding farmers in making necessary decisions regarding selling, etc. They also facilitate sustainability as early prediction of weeds, pests, and diseases would directly reduce the content of chemical inputs in the field; this, in turn, supports soil health and also checks overexploitation of groundwater while irrigating the croplands. Except for the doubt and misconceptions of the farmers about the potency of these AI-based tools in fulfilling their needs and the high cost, AI as a whole is a complete solution to the modern farming society for benefiting themselves and fulfilling the market demand without disturbing our ecosystem.

References:

  • Agarwal, M., Gupta, S. K., & Biswas, K. K. (2020). Development of Efficient CNN model for Tomato crop disease identification. Sustainable Computing: Informatics and Systems28, 100407.
  • Aherwadi, N., Mittal, U., Singla, J., Jhanjhi, N. Z., Yassine, A., & Hossain, M. S. (2022). Prediction of fruit maturity, quality, and its life using deep learning algorithms. Electronics11(24), 4100.
  • Ahmad, I., Hamid, M., Yousaf, S., Shah, S. T., & Ahmad, M. O. (2020). Optimizing pretrained convolutional neural networks for tomato leaf disease detection. Complexity, 1-6.
  • Ali, S., Ullah, M. I., Sajjad, A., Shakeel, Q., & Hussain, A. (2021). Environmental and health effects of pesticide residues. Sustainable Agriculture Reviews 48: Pesticide Occurrence, Analysis and Remediation Vol. 2 Analysis, 311-336.
  • Alreshidi, E. (2019). Smart sustainable agriculture (SSA) solution underpinned by internet of things (IoT) and artificial intelligence (AI). arXiv preprint arXiv:1906.03106.
  • Alvim, S. J., Guimarães, C. M., Sousa, E. F. D., Garcia, R. F., & Marciano, C. R. (2022). Application of artificial intelligence for irrigation management: a systematic review. Engenharia Agrícola, 42.
  • Awais, M., Naqvi, S. M. Z. A., Zhang, H., Li, L., Zhang, W., Awwad, F. A., Ismail, A.A.I., Khan, M.I., Raghavan, V., & Hu, J. (2023). AI and machine learning for soil analysis: an assessment of sustainable agricultural practices. Bioresources and Bioprocessing10(1), 90.
  • Banerjee, S., Mitra, S., Velhal, M., Desmukh, V., & Ghosh, B. (2021). Impact of agrochemicals on the environment and human health: The concerns and remedies. Int. J. Exp. Res. Rev.26, 125-140. https://doi.org/10.52756/ijerr.2021.v26.010
  • Buyrukoğlu, G., Buyrukoglu, S., & Topalcengiz, Z. (2021). Comparing regression models with count data to artificial neural network and ensemble models for prediction of generic Escherichia coli population in agricultural ponds based on weather station measurements. Microbial Risk Analysis19, 100171.
  • Chaudhary, Yashi, & Pathak, H. (2023). MCIP: Mining Crop Image Data On pyspark data frame Using Feature Selection and Cluster Based Techniques. Int. J. Exp. Res. Rev.34(Special Vol.), 106-119. https://doi.org/10.52756/ijerr.2023.v34spl.011
  • Chen, J., Chen, J., Zhang, D., Nanehkaran, Y. A., & Sun, Y. (2021). A cognitive vision method for the detection of plant disease images. Machine Vision and Applications32, 1-18.
  • Chopra, H., Singh, H., Bamrah, M. S., Mahbubani, F., Verma, A., Hooda, N., Rana, P.S., Singla, R.K., & Singh, A. K. (2021). Efficient fruit grading system using spectrophotometry and machine learning approaches. IEEE Sensors Journal21(14), 16162-16169.
  • Cousin, P., Husson, O., Thiare, O., & Ndiaye, G. (2021, May). Technology-enabled sustainable agriculture: The agroecology case. In 2021 IST-Africa Conference, IEEE, 1-8.
  • Dawn, N., Ghosh, T., Ghosh, S., Saha, A., Mukherjee, P., Sarkar, S., Guha, S., & Sanyal, T. (2023). Implementation of Artificial Intelligence, Machine Learning, and Internet of Things (IoT) in revolutionizing Agriculture: A review on recent trends and challenges. Int. J. Exp. Res. Rev.30, 190-218. https://doi.org/10.52756/ijerr.2023.v30.018
  • de Lima Silva, Y. K., Furlani, C. E. A., & Canata, T. F. (2024). AI-Based Prediction of Carrot Yield and Quality on Tropical Agriculture. AgriEngineering6(1), 361-374.
  • Dutta, J., Patwardhan, M., Deshpande, P., Karande, S., & Rai, B. (2023). Zero-shot transfer learned generic AI models for prediction of optimally ripe climacteric fruits. Scientific Reports13(1), 7347.
  • Elaraby, A., Hamdy, W., & Alruwaili, M. (2022). Optimization of Deep Learning Model for Plant Disease Detection Using Particle Swarm Optimizer. Computers, Materials & Continua71(2).
  • Elbeltagi, A., Kushwaha, N. L., Srivastava, A., & Zoof, A. T. (2022). Artificial intelligent-based water and soil management. In Deep learning for sustainable agriculture (pp. 129-142). Academic Press.
  • FAO. 2023. World Food and Agriculture – Statistical Yearbook 2023. Rome.
  • Gadekallu, T. R., Rajput, D. S., Reddy, M. P. K., Lakshmanna, K., Bhattacharya, S., Singh, S., Jolfaei, A., & Alazab, M. (2021). A novel PCA–whale optimization-based deep neural network model for classification of tomato plant diseases using GPU. Journal of Real-Time Image Processing18, 1383-1396.
  • Goyal, K., Kumar, P., & Verma, K. (2023). AI-based fruit identification and quality detection system. Multimedia Tools and Applications82(16), 24573-24604.
  • Haq, S. I. U., Tahir, M. N., & Lan, Y. (2023). Weed detection in wheat crops using image analysis and artificial intelligence (AI). Applied Sciences13(15), 8840.
  • Jain, S., & Ramesh, D. (2021, July). AI based hybrid CNN-LSTM model for crop disease prediction: An ML advent for rice crop. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.
  • Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem2(1), 15-30.
  • Jose, A., Nandagopalan, S., & Akana, C. M. V. S. (2021). Artificial Intelligence techniques for agriculture revolution: a survey. Annals of the Romanian Society for Cell Biology, 2580-2597.
  • Kaplun, D., Deka, S., Bora, A., Choudhury, N., Basistha, J., Purkayastha, B., … & Misra, D. D. (2024). An intelligent agriculture management system for rainfall prediction and fruit health monitoring. Scientific Reports14(1), 512.
  • Karthik, R., Hariharan, M., Anand, S., Mathikshara, P., Johnson, A., & Menaka, R. (2020). Attention embedded residual CNN for disease detection in tomato leaves. Applied Soft Computing86, 105933.
  • Khoury, C. K., Brush, S., Costich, D. E., Curry, H. A., De Haan, S., Engels, J. M., Guarino, L., Hoban, S., Mercer, K.L., Miller, A.J., Nabhan, G.P., Perales, H.R., Richards, C., Riggins, C., & Thormann, I. (2022). Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytologist233(1), 84-118.
  • Krishnan, V. G., Deepa, J. R. V. P., Rao, P. V., Divya, V., & Kaviarasan, S. (2022). An automated segmentation and classification model for banana leaf disease detection. Journal of Applied Biology and Biotechnology10(1), 213-220.
  • Laktionov, I., Diachenko, G., Rutkowska, D., & Kisiel-Dorohinicki, M. (2023). An explainable AI approach to agrotechnical monitoring and crop diseases prediction in Dnipro region of Ukraine. Journal of Artificial Intelligence and Soft Computing Research13(4), 247-272.
  • Liu, L. W., Ma, X., Wang, Y. M., Lu, C. T., & Lin, W. S. (2021). Using artificial intelligence algorithms to predict rice (Oryza sativa L.) growth rate for precision agriculture. Computers and Electronics in Agriculture187, 106286.
  • Liu, X., Zhu, X., Zhang, Q., Yang, T., Pan, Y., Sun, P., 2020. A remote sensing and artificial neural network-based integrated agricultural drought index: index development and applications. Catena, 186, 104394.
  • Malhotra, K., & Firdaus, M. (2022). Application of artificial intelligence in IoT security for crop yield prediction. ResearchBerg Review of Science and Technology2(1), 136-157.
  • Marković, D., Vujičić, D., Tanasković, S., Đorđević, B., Ranđić, S., & Stamenković, Z. (2021). Prediction of pest insect appearance using sensors and machine learning. Sensors21(14), 4846.
  • Mohammed, M., Hamdoun, H., & Sagheer, A. (2023). Toward Sustainable Farming: Implementing Artificial Intelligence to Predict Optimum Water and Energy Requirements for Sensor-Based Micro Irrigation Systems Powered by Solar PV. Agronomy13(4), 1081.
  • Mohan, S. S., Venkat, R., Rahaman, S., Vinayak, M., & Babu, B. H. (2023). Role of AI in agriculture: applications, limitations and challenges: A review. Agricultural Reviews44(2), 231-237.
  • Monteiro, A. L., de Freitas Souza, M., Lins, H. A., da Silva Teofilo, T. M., Júnior, A. P. B., Silva, D. V., & Mendonça, V. (2021). A new alternative to determine weed control in agricultural systems based on artificial neural networks (ANNs). Field Crops Research263, 108075.
  • Oliveira, L. F., Moreira, A. P., & Silva, M. F. (2021). Advances in agriculture robotics: A state-of-the-art review and challenges ahead. Robotics10(2), 52.
  • Pingali, P. L. (2012). Green revolution: impacts, limits, and the path ahead. Proceedings of the national academy of sciences109(31), 12302-12308.
  • Raj, E. F. I., Appadurai, M., & Athiappan, K. (2022). Precision farming in modern agriculture. In Smart Agriculture Automation Using Advanced Technologies: Data Analytics and Machine Learning, Cloud Architecture, Automation and IoT (pp. 61-87). Singapore: Springer Singapore.
  • Ray, A. (2019). Micro level problems and management of agricultural activities Jagadishnagar village, Magrahat Block -1, South 24 Parganas, West Bengal, India. Int. J. Exp. Res. Rev.19, 31-39. https://doi.org/10.52756/ijerr.2019.v19.004
  • Rout, S., & Samantaray, S. (2022, November). Interplay of Artificial Intelligence and Ecofeminism: A Reassessment of Automated Agroecology and Biased Gender in the Tea Plantations. In 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC) (pp. 1-6). IEEE.
  • Rozaini, I. A., Ahmad Zakey, N. E. N., Mohd Zaman, M. H., Ibrahim, M. F., Mustaza, S. M., & Mohamed Moubark, A. (2023). Bilateral Teleoperation with a Shared Design of Master and Slave Devices for Robotic Excavators in Agricultural Applications. Int. J. Exp. Res. Rev.35, 119-127. https://doi.org/10.52756/ijerr.2023.v35spl.011
  • Sarkar, S., Chakrobarty, K., & Moitra, M. (2016). A study on abundance and group diversity of soil microarthropods at four different soil habitats in North Dinajpur, West Bengal, India. Int. J. Exp. Res. Rev., 7, 32-37.
  • Sasso, M. A., & Costa, P. D. P. (2021). Artificial Intelligence Applied To Agroecology: A Model For Brazilian Territory. In 2021 ASABE Annual International Virtual Meeting (p. 1). American Society of Agricultural and Biological Engineers.
  • Seremesic, S., Jovovic, Z., Jug, D., Djikic, M., Dolijanovic, Z., Bavec, F., Jordanovska, S., Bavec, M., Durdevic, B & Jug, I. (2021). Agroecology in the West Balkans: pathway of development and future perspectives. Agroecology and Sustainable Food Systems45(8), 1213-1245.
  • Singh, P., & Kaur, A. (2022). A systematic review of artificial intelligence in agriculture. Deep Learning for Sustainable Agriculture, 57-80.
  • Singh, R. K., Tiwari, A., & Gupta, R. K. (2022). Deep transfer modeling for classification of Maize Plant Leaf Disease. Multimedia Tools and Applications81(5), 6051-6067.
  • Sitharthan, R., Rajesh, M., Vimal, S., Kumar, S., Yuvaraj, S., Kumar, A., I, R.J., & Vengatesan, K. (2023). A novel autonomous irrigation system for smart agriculture using AI and 6G enabled IoT network. Microprocessors and Microsystems101, 104905.
  • Somvanshi, P. S., Pandiaraj, T., & Singh, R. P. (2020). An unexplored story of successful green revolution of India and steps towards ever green revolution. Journal of Pharmacognosy and Phytochemistry9(1), 1270-1273.
  • Soria‐Lopez, A., Garcia‐Perez, P., Carpena, M., Garcia‐Oliveira, P., Otero, P., Fraga‐Corral, M., Cao, H., Prieto, M.A., & Simal‐Gandara, J. (2023). Challenges for future food systems: From the Green Revolution to food supply chains with a special focus on sustainability. Food Frontiers4(1), 9-20.
  • Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture4, 58-73.
  • Vijayakumar, V., Costa, L., & Ampatzidis, Y. (2021). Prediction of citrus yield with AI using ground-based fruit detection and UAV imagery. In 2021 ASABE Annual International Virtual Meeting (p. 1). American Society of Agricultural and Biological Engineers.
  • Wongchai, A., rao Jenjeti, D., Priyadarsini, A. I., Deb, N., Bhardwaj, A., & Tomar, P. (2022). Farm monitoring and disease prediction by classification based on deep learning architectures in sustainable agriculture. Ecological Modelling474, 110167. Zhang, L., Liu, Y., Ren, L., Teuling, A. J., Zhu, Y., Wei, L., Zhang, L., Jiang, S., Yang, X., Fang, X., & Yin, H. (2022). Analysis of flash droughts in China using machine learning. Hydrology and Earth System Sciences26(12), 3241-3261.

check for update

A Basic Handbook of Science, Technology and Innovation for Inclusive Development
[Volume: 1]

How to Cite
Mayuri Bhagawati, Chayan Dhar, Dipan Sarma, Manna Das, Badal Kumar Datta (2024). Integration of artificial intelligence toward better agricultural sustainability. © International Academic Publishing House (IAPH), Dr. Suman Adhikari, Dr. Manik Bhattacharya and Dr. Ankan Sinha, A Basic Handbook of Science, Technology and Innovation for Inclusive Development [Volume: 1], pp. 71-85. ISBN: 978-81-969828-4-3.
DOI: https://doi.org/10.52756/bhstiid.2024.e01.005

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device

Our Other Books –