A Brief Review on Plant Growth Promoting Rhizobacteria

Folguni Laskara
aGuest lecturer, Department of Botany, Govt. Degree College, Dharmanagar, Tripura(N) –799253, India.
OrchideID Icon https://orcid.org/0009-0005-9219-2912

Published online: 27th May, 2024

DOI: https://doi.org/10.52756/bhstiid.2024.e01.006

Keywords: Plant growth-promoting rhizobacteria, N2-fixation, sustainable agriculture, fertilizers, rhizospheric bacteria.

Abstract:

Plant growth-promoting rhizobacteria (PGPR) are helpful bacteria residing in the rhizosphere (root zone) of plants. The PGPR also refers to free-living soil bacteria that are favourable to plant development and can colonize plant roots. This book chapter explores the prospects of PGPR in promoting plant growth and development. It highlights how PGPR employ several mechanisms, for example, N2-fixation, nutrient solubilization, phytohormone production, and induced systemic resistance, to enhance plant health and yield. The increasing demand for eco-friendly agricultural practices positions PGPR as an auspicious substitute for chemical fertilizers and pesticides. Finally, current challenges and future directions in exploring the full potential of PGPR for sustainable agriculture are discussed, emphasizing the need for further research and technological innovations to optimize their efficacy and application strategies.

References:

  • Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological research221, 36-49.
  • Alves, G. C., Videira, S. S., Urquiaga, S., & Reis, V. M. (2015). Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant and Soil387, 307-321.
  • Andrews, M., James, E. K., Cummings, S. P., Zavalin, A. A., Vinogradova, L. V., & McKenzie, B. A. (2003). Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis35(1), 209-229.
  • Banerjee, S., Mitra, S., Velhal, M., Desmukh, V., & Ghosh, B. (2021). Impact of agrochemicals on the environment and human health: The concerns and remedies. Int. J. Exp. Res. Rev.26, 125-140. https://doi.org/10.52756/ijerr.2021.v26.010
  • Brierley, J. A. (1985). Use of microorganisms for mining metals. In: Halvorson HO, Pramer D, Rogul M (eds) Engineered organisims in the environment: scientific issues. ASM Press, Washington, pp 141–146.
  • Burns, R. C., & Hardy, R. W. (2012). Nitrogen fixation in bacteria and higher plants.
  • Burr, T. J., Caesar, A., & Schrolh, M. N. (1984). Beneficial plant bacteria. Critical Reviews in Plant Sciences2(1), 1-20.
  • Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry42(5), 669-678.
  • Davison, J. (1988). Plant beneficial bacteria. Bio/technology6(3), 282-286.
  • Dhakal, K., Singh, K., Adhikari, S., Ojha, R., & Sapkota, M. (2016). Response of application of different sources of nutrients as fertilizer on growth and yield of Cauliflower (Brassica oleracea L. var. botrytis ) and its residual effect on soil. Int. J. Exp. Res. Rev.7, 10-17. 
  • Di Benedetto, N. A., Corbo, M. R., Campaniello, D., Cataldi, M. P., Bevilacqua, A., Sinigaglia, M., & Flagella, Z. (2017). The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS microbiology3(3), 413.
  • Dobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical reviews in plant sciences22(2), 107-149.
  • Doty, S. L. (2011). Nitrogen-fixing endophytic bacteria for improved plant growth. Bacteria in agrobiology: plant growth responses, 183-199.
  • Dubey, S. K., Tripathi, A. K., & Upadhyay, S. N. (2006). Exploration of soil bacterial communities for their potential as bioresource. Bioresource Technology97(17), 2217-2224.
  • Ehrlich, H. L. (1990). Geomicrobiology (2ndedn) Dekker. New York, p 646.
  • Engelhard, M., Hurek, T., & Reinhold‐Hurek, B. (2000). Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environmental Microbiology2(2), 131-141.
  • Feng, Y., Shen, D., & Song, W. (2006). Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. Journal of applied microbiology100(5), 938-945.
  • Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. International Journal of Agricultural and Biosystems Engineering3(1), 9-14.
  • Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of microbiology60, 579-598.
  • Hurek, T., Handley, L. L., Reinhold-Hurek, B., & Piché, Y. (2002). Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Molecular Plant-Microbe Interactions15(3), 233-242.
  • Jha, P. N., Gomaa, A. B., Yanni, Y. G., El-Saadany, A. E. Y., Stedtfeld, T. M., Stedtfeld, R. D., … & Dazzo, F. B. (2020). Alterations in the endophyte-enriched root-associated microbiome of rice receiving growth-promoting treatments of urea fertilizer and Rhizobium biofertilizer. Microbial ecology79, 367-382.
  • Kour, D., Rana, K. L., Yadav, N., Yadav, A. N., Kumar, A., Meena, V. S., … & Saxena, A. K. (2019). Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices, 19-65.
  • Kumar, R., Mishra, J. S., Rao, K. K., Mondal, S., Hazra, K. K., Choudhary, J. S., … & Bhatt, B. P. (2020). Crop rotation and tillage management options for sustainable intensification of rice-fallow agro-ecosystem in eastern India. Scientific reports10(1), 11146.
  • Liu, H., Zhang, L., Meng, A., Zhang, J., Xie, M., Qin, Y., … & Qiu, L. (2017). Isolation and molecular identification of endophytic diazotrophs from seeds and stems of three cereal crops. PLoS One12(10), e0187383.
  • Mirza, M. S., Rasul, G., Mehnaz, S., Ladha, J. K., So, R. B., Ali, S., & Malik, K. A. (2000). Beneficial effects of inoculated nitrogen-fixing bacteria on rice. The quest for nitrogen fixation in rice, 191-204.
  • Mirza, M. S., Mehnaz, S., Normand, P., Prigent-Combaret, C., Moënne-Loccoz, Y., Bally, R., & Malik, K. A. (2006). Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biology and Fertility of Soils43, 163-170.
  • Monteiro, R. A., Balsanelli, E., Wassem, R., Marin, A. M., Brusamarello-Santos, L. C., Schmidt, M. A., … & Souza, E. M. (2012). Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant and Soil356, 175-196.
  • Mukhtar, S., Mehnaz, S., & Malik, K. A. (2019). Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crop improvement. Environmental Sustainability2(3), 329-338.
  • Muthukumarasamy, R., Revathi, G., & Lakshminarasimhan, C. (1999). Influence of N fertilisation on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biology and Fertility of Soils29, 157-164.
  • Okon, Y., & Labandera-Gonzalez, C. A. (1994). Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biology and Biochemistry26(12), 1591-1601.
  • Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., & Sa, T. (2005). Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research160(2), 127-133.
  • Pereg Gerk, L., Gilchrist, K., & Kennedy, I. R. (2000). Mutants with enhanced nitrogenase activity in hydroponic Azospirillum brasilense-wheat associations. Applied and environmental Microbiology66(5), 2175-2184.
  • Prakamhang, J., Minamisawa, K., Teamtaisong, K., Boonkerd, N., & Teaumroong, N. (2009). The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Applied soil ecology42(2), 141-149.
  • Reis, V. M., Baldani, J. I., Baldani, V. L. D., & Dobereiner, J. (2000). Biological dinitrogen fixation in gramineae and palm trees. Critical Reviews in Plant Science19(3), 227-247.
  • Roesch, L. F. W., Olivares, F. L., Pereira Passaglia, L. M., Selbach, P. A., de Sá, E. L. S., & de Camargo, F. A. O. (2006). Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World Journal of Microbiology and Biotechnology22, 967-974.
  • Roy, B. D., Deb, B., & Sharma, G. D. (2013). Isolation, characterization and screening of Burkholderia caribensis of rice agro-ecosystems of South Assam, India. African Journal of Agricultural Research8(4), 349-357.
  • Sharma, K. C., & Sharma, L. K. (2010). Effect of bio-fertilizers and NPK levels on growth and yield of mid-maturity group of cauliflower under mid hill subhumid conditions of Himachal Pradesh. Journal of Hill Agriculture1(1), 19-22.
  • Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., … & Smith, D. L. (2021). PGPR in agriculture: A sustainable approach to increasing climate change resilience. Frontiers in Sustainable Food Systems5, 667546.
  • Shahi, S. K., Rai, A. K., Tyagi, M. B., Sinha, R. P., & Kumar, A. (2011). Rhizosphere of rice plants harbour bacteria with multiple plant growth promoting features. African Journal of Biotechnology10(42), 8296-8305.
  • Shu, W., Pablo, G. P., Jun, Y., & Danfeng, H. (2012). Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management. World Journal of Microbiology and Biotechnology28, 493-503.
  • Sharma, D., Singh, P., & Punhani, A. (2024). Sugarcane Diseases Detection using the Improved Grey Wolf Optimization Algorithm with Convolution Neural Network. International Journal of Experimental Research and Review38, 246-254. https://doi.org/10.52756/ijerr.2024.v38.022
  • Sinha, S. K., Kumar, A. D., Kumari, A., & Singh, A. K. (2024). The Integrated Effect of Organic Manure, Biofertilizer and Inorganic Fertilizer on Soil Properties, Yield and Quality in Sugarcane Plant-ratoon System under Calcareous Soil of Indo-gangetic Plains of India. Journal of Scientific Research and Reports30(5), 193-206.
  • Singh, R. K., Singh, P., Li, H. B., Yang, L. T., & Li, Y. R. (2017). Soil–plant–microbe interactions: use of nitrogen-fixing bacteria for plant growth and development in sugarcane. Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 1: Fundamental Mechanisms, Methods and Functions, 35-59.
  • Tang, A., Haruna, A. O., Majid, N. M. A., & Jalloh, M. B. (2020). Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms8(3), 442.
  • Taulé, C., Mareque, C., Barlocco, C., Hackembruch, F., Reis, V. M., Sicardi, M., & Battistoni, F. (2012). The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant and Soil356, 35-49.
  • Trân Van, V., Berge, O., Ngô Kê, S., Balandreau, J., & Heulin, T. (2000). Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant and Soil218, 273-284.
  • Verma, P., Yadav, A. N., Kumar, V., Singh, D. P., & Saxena, A. K. (2017). Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. Plant-microbe interactions in agro-ecological perspectives: volume 2: microbial interactions and agro-ecological impacts, 543-580.
  • Xie, C. H., & Yokota, A. (2006). Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. International journal of systematic and evolutionary microbiology56(4), 889-893.
  • Zehr, J. P., & McReynolds, L. A. (1989). Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautiiApplied and environmental Microbiology55(10), 2522-2526.
  • Zehra, E. K. İ. N. (2011). P-Solubilizing Bacteria and Phosphorus Fertilizer Applications to Sunflower Improves Seed Set, Seed Filling Efficiency and Concentration of Macro-and. Turkish Journal of Field Crops16(2), 183-189. Zhang, Y., Kang, X., Liu, H., Liu, Y., Li, Y., Yu, X., … & Chen, Q. (2018). Endophytes isolated from ginger rhizome exhibit growth promoting potential for Zea maysArchives of Agronomy and Soil Science64(9), 1302-1314.

check for update

A Basic Handbook of Science, Technology and Innovation for Inclusive Development
[Volume: 1]

How to Cite
Folguni Laskar (2024). A Brief Review on Plant Growth Promoting Rhizobacteria. © International Academic Publishing House (IAPH), Dr. Suman Adhikari, Dr. Manik Bhattacharya and Dr. Ankan Sinha, A Basic Handbook of Science, Technology and Innovation for Inclusive Development [Volume: 1], pp. 86-103. ISBN: 978-81-969828-4-3.
DOI: https://doi.org/10.52756/bhstiid.2024.e01.006

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device

Our Other Books –