Life in the Balance: Zooplankton’s Battle in a Changing Environment

Shantanabha Das
Department of Zoology, Diamond Harbour Women’s University, Sarisha, West Bengal, India

Puja Mishra
Department of Zoology, Diamond Harbour Women’s University, Sarisha, West Bengal, India

Atri Das
Department of Zoology, Diamond Harbour Women’s University, Sarisha, West Bengal, India

DOI: https://doi.org/10.52756/lbsopf.2024.e01.002

Keywords: zooplankton, pollution, heavy metal, microplastic, climate change

Abstract:
Zooplankton are often overlooked but are vital components of marine and freshwater ecosystems. Zooplankton are pivotal in nutrient cycling and ecosystem dynamics as they transfer energy between primary producers and higher trophic levels. However, unprecedented growth in human population and industrialization have exposed aquatic environments to various pollutants, threatening zooplankton communities worldwide. Nutrient over-enrichment, primarily from sewage discharge and agricultural runoff, has caused eutrophication in water bodies. It is altering species composition and favouring the proliferation of certain zooplankton groups while decimating others. As a byproduct of industrialization, heavy metals have infiltrated aquatic ecosystems, accumulating in zooplankton and propagating up the food chain. It poses grave risks to human and ecosystem health. Microplastics (MPs) infiltrating aquatic environments also threaten zooplankton, impairing feeding, growth, and reproduction and altering gene expression. The emergence of pharmaceuticals and antibiotics as environmental contaminants further compounds the plight of zooplankton, disrupting reproduction, survival, and ecological resilience. Pesticides, pervasive in agricultural runoff, harm zooplankton communities significantly, jeopardizing ecosystem stability. Climate change compounds the problem in zooplankton communities by inducing range shifts and phenological changes, altering community dynamics, and heightening vulnerability to other stressors. Regular monitoring of zooplankton has emerged as an invaluable indicator of ecosystem function. As researchers strive to unravel the complex interplay of stressors reshaping aquatic ecosystems, the status of zooplankton communities can signal the urgent need for concerted conservation efforts and proactive management strategies to safeguard the ecological balance of our aquatic realms.

References:

  • Achary, S., Panigrahi, S., Panigrahy, R. C., Prabhu, R. K., Sekar, J. K., & Satpathy, K. K. (2020). Concentration factor of metals in zooplankton and their seasonality in Kalpakkam coast, southwest Bay of Bengal. Environmental Chemistry and Ecotoxicology, 2, 12-23. doi:https://doi.org/10.1016/j.enceco.2020.01.002
  • Akbar, S., Gu, L., Sun, Y., Zhou, Q., Zhang, L., Lyu, K., . . . Yang, Z. (2020). Changes in the life history traits of Daphnia magna are associated with the gut microbiota composition shaped by diet and antibiotics. Science of The Total Environment, 705, 135827. doi:https://doi.org/10.1016/j.scitotenv.2019.135827
  • Basu, S., Chanda, A., Gogoi, P., & Bhattacharyya, S. (2021). Organochlorine pesticides and heavy metals in the zooplankton, fishes, and shrimps of tropical shallow tidal creeks and the associated human health risk. Marine Pollution Bulletin, 165, 112170. doi:https://doi.org/10.1016/j.marpolbul.2021.112170
  • Biswas, G., Pramanik, S., Bhattacharjee, K., & Saha, S. (2023). Understanding the response of phytoplankton to the cyclonic event Sitrang A case study in the Hooghly estuary of Sundarban Bay of Bengal region. Int. J. Exp. Res. Rev., 32, 309-322. https://doi.org/10.52756/ijerr.2023.v32.027
  • Botterell, Z. L. R., Beaumont, N., Cole, M., Hopkins, F. E., Steinke, M., Thompson, R. C., & Lindeque, P. K. (2020). Bioavailability of Microplastics to Marine Zooplankton: Effect of Shape and Infochemicals. Environmental Science & Technology, 54(19), 12024-12033. doi:10.1021/acs.est.0c02715
  • Botterell, Z. L. R., Lindeque, P. K., Thompson, R. C., & Beaumont, N. J. (2023). An assessment of the ecosystem services of marine zooplankton and the key threats to their provision. Ecosystem Services, 63, 101542. doi:https://doi.org/10.1016/j.ecoser.2023.101542
  • Burger, J. (2006). Bioindicators: Types, Development, and Use in Ecological Assessment and Research. Environmental Bioindicators, 1(1), 22-39. doi:10.1080/15555270590966483
  • Coady, K. K., Burgoon, L., Doskey, C., & Davis, J. W. (2020). Assessment of Transcriptomic and Apical Responses of Daphnia magna Exposed to a Polyethylene Microplastic in a 21-d Chronic Study. Environ Toxicol Chem, 39(8), 1578-1589. doi:10.1002/etc.4745
  • Cole, M., Lindeque, P., Fileman, E., Halsband, C., & Galloway, T. S. (2015). The Impact of Polystyrene Microplastics on Feeding, Function and Fecundity in the Marine Copepod Calanus helgolandicus. Environmental Science & Technology, 49(2), 1130-1137. doi:10.1021/es504525u
  • Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic Ingestion by Zooplankton. Environmental Science & Technology, 47(12), 6646-6655. doi:10.1021/es400663f
  • Cooper, R. O., Tjards, S., Rischling, J., Nguyen, D. T., & Cressler, C. E. (2022). Multiple generations of antibiotic exposure and isolation influence host fitness and the microbiome in a model zooplankton species. FEMS Microbiology Ecology, 98(10), fiac082. doi:10.1093/femsec/fiac082
  • Cripps, G., Lindeque, P., & Flynn, K. J. (2014). Have we been underestimating the effects of ocean acidification in zooplankton? Global Change Biology, 20(11), 3377-3385. doi:https://doi.org/10.1111/gcb.12582
  • Das, S., Tamili, D. P.,  & Madhu, N.R. (2023). Impacts of Microplastics on Zooplankton. © International Academic Publishing House (IAPH), Shubhadeep Roychoudhury, Tanmay Sanyal, Koushik Sen & Sudipa Mukherjee Sanyal (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 2], pp. 288-303. ISBN: 978-81-962683-8-1. DOI: https://doi.org/10.52756/boesd.2023.e02.019
  • Duchet, C., Grabicová, K., Kolar, V., Lepšová, O., Švecová, H., Csercsa, A., . . . Boukal, D. S. (2024). Combined effects of climate warming and pharmaceuticals on a tri-trophic freshwater food web. Water Research, 250, 121053. doi:https://doi.org/10.1016/j.watres.2023.121053
  • Dutta, A., Madhu, N.R.,&   Behera, B. K. (2014). Population builds up and diversity of Odonate species in relation to food preference in a fish farming Lake at Media, West Bengal, India. Int. J. Adv. Res. Biol. Sci., 1(7), 199–203. (ISSN: 2348-8069).
  • Fernández-Alías, A., Montaño-Barroso, T., Conde-Caño, M.-R., Manchado-Pérez, S., López-Galindo, C., Quispe-Becerra, J.-I., . . . Pérez-Ruzafa, A. (2022). Nutrient overload promotes the transition from top-down to bottom-up control and triggers dystrophic crises in a Mediterranean coastal lagoon. Science of The Total Environment, 846, 157388. doi:https://doi.org/10.1016/j.scitotenv.2022.157388
  • Ger, K. A., Urrutia-Cordero, P., Frost, P. C., Hansson, L.-A., Sarnelle, O., Wilson, A. E., & Lürling, M. (2016). The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae, 54, 128-144. doi:https://doi.org/10.1016/j.hal.2015.12.005
  • González-Pérez, B. K., Sarma, S. S. S., & Nandini, S. (2016). Effects of selected pharmaceuticals (ibuprofen and amoxicillin) on the demography of Brachionus calyciflorus and Brachionus havanaensis (Rotifera). The Egyptian Journal of Aquatic Research, 42(3), 341-347. doi:https://doi.org/10.1016/j.ejar.2016.09.003
  • Gregory, B., Christophe, L., & Martin, E. (2009). Rapid biogeographical plankton shifts in the North Atlantic Ocean. Global Change Biology, 15(7), 1790-1803. doi:https://doi.org/10.1111/j.1365-2486.2009.01848.x
  • Gutierrez, M. F., Battauz, Y., & Caisso, B. (2017). Disruption of the hatching dynamics of zooplankton egg banks due to glyphosate application. Chemosphere, 171, 644-653. doi:https://doi.org/10.1016/j.chemosphere.2016.12.110
  • Haque, F., & Fan, C. (2023). Fate of microplastics under the influence of climate change. iScience, 26(9). doi:10.1016/j.isci.2023.107649
  • Hasenbein, S., Lawler, S. P., Geist, J., & Connon, R. E. (2016). A long-term assessment of pesticide mixture effects on aquatic invertebrate communities. Environmental Toxicology and Chemistry, 35(1), 218-232. doi:https://doi.org/10.1002/etc.3187
  • Hernández Ruiz, L., Ekumah, B., Asiedu, D. A., Albani, G., Acheampong, E., Jónasdóttir, S. H., . . . Nielsen, T. G. (2021). Climate change and oil pollution: A dangerous cocktail for tropical zooplankton. Aquatic Toxicology, 231, 105718. doi:https://doi.org/10.1016/j.aquatox.2020.105718
  • Kim, J. O., Dimitriou, A., Forster, I., & Tseng, M. (2024). Heatwave-mediated decreases in phytoplankton quality negatively affect zooplankton productivity. Functional Ecology, n/a(n/a). doi:https://doi.org/10.1111/1365-2435.14530
  • Knillmann, S., Stampfli, N. C., Noskov, Y. A., Beketov, M. A., & Liess, M. (2013). Elevated temperature prolongs long-term effects of a pesticide on Daphnia spp. due to altered competition in zooplankton communities. Glob Chang Biol, 19(5), 1598-1609. doi:10.1111/gcb.12151
  • Kong, R., Yang, C., Huang, K., Han, G., Sun, Q., Zhang, Y., . . . Liu, C. (2022). Application of agricultural pesticides in a peak period induces an abundance decline of metazoan zooplankton in a lake ecosystem. Water Research, 224, 119040. doi:https://doi.org/10.1016/j.watres.2022.119040
  • Lee, K.-W., Shim, W. J., Kwon, O. Y., & Kang, J.-H. (2013). Size-Dependent Effects of Micro Polystyrene Particles in the Marine Copepod Tigriopus japonicus. Environmental Science & Technology, 47(19), 11278-11283. doi:10.1021/es401932b
  • Luo, T., Chen, J., Li, X., Zhang, S., Yao, H., & Peijnenburg, W. J. G. M. (2018). Effects of lomefloxacin on survival, growth and reproduction of Daphnia magna under simulated sunlight radiation. Ecotoxicology and Environmental Safety, 166, 63-70. doi:https://doi.org/10.1016/j.ecoenv.2018.09.067
  • Lynn, S. G., Price, D. J., Birge, W. J., & Kilham, S. S. (2007). Effect of nutrient availability on the uptake of PCB congener 2,2′,6,6′-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria). Aquatic Toxicology, 83(1), 24-32. doi:https://doi.org/10.1016/j.aquatox.2007.03.007
  • Mallick, A., & Panigrahi, A. (2018). Effect of temperature variation on disease proliferation of common fishes in perspective of climate change. Int. J. Exp. Res. Rev., 16, 40-49. https://doi.org/10.52756/ijerr.2018.v16.005
  • Messinetti, S., Mercurio, S., Parolini, M., Sugni, M., & Pennati, R. (2018). Effects of polystyrene microplastics on early stages of two marine invertebrates with different feeding strategies. Environmental Pollution, 237, 1080-1087. doi:https://doi.org/10.1016/j.envpol.2017.11.030
  • Pan, Y., Yan, S.-w., Li, R.-z., Hu, Y.-w., & Chang, X.-x. (2017). Lethal/sublethal responses of Daphnia magna to acute norfloxacin contamination and changes in phytoplankton-zooplankton interactions induced by this antibiotic. Scientific Reports, 7(1), 40385. doi:10.1038/srep40385
  • Patra, A., & Madhu, N.R. (2009). Impact of Physiochemical characteristics on Zooplankton community of a freshwater wetland of Udaynarayanpur, Howrah, W.B., India. Environment and Ecology, 27(2A), 803-808. (ISSN: 0970-0420
  • Pestana, J. L. T., Loureiro, S., Baird, D. J., & Soares, A. M. V. M. (2010). Pesticide exposure and inducible antipredator responses in the zooplankton grazer, Daphnia magna Straus. Chemosphere, 78(3), 241-248. doi:https://doi.org/10.1016/j.chemosphere.2009.10.066
  • Ratnarajah, L., Abu-Alhaija, R., Atkinson, A., Batten, S., Bax, N. J., Bernard, K. S., . . . Yebra, L. (2023). Monitoring and modelling marine zooplankton in a changing climate. Nature Communications, 14(1), 564. doi:10.1038/s41467-023-36241-5
  • Richardson, A. J. (2008). In hot water: zooplankton and climate change. ICES Journal of Marine Science, 65(3), 279-295. doi:10.1093/icesjms/fsn028
  • Roy, S., Das, N., Saha, S., & Ghosh, D. (2022). Idol immersion in Ichhamati river and its impact on water quality parameters. Int. J. Exp. Res. Rev., 29, 40-47. https://doi.org/10.52756/ijerr.2022.v29.004
  • Shen, J., Qin, G., Yu, R., Zhao, Y., Yang, J., An, S., . . . Wan, Y. (2021). Urbanization has changed the distribution pattern of zooplankton species diversity and the structure of functional groups. Ecological Indicators, 120, 106944. doi:https://doi.org/10.1016/j.ecolind.2020.106944
  • Singaram, P., Retnamma, J., Cheruparambil, R., Nagarathinam, A., Loganathan, J., Thangaraj, J. R., & Radhakrishnan, S. S. (2023). Heavy metals concentration in zooplankton (copepods) in the western Bay of Bengal. Environmental Science and Pollution Research, 30(45), 101565-101584. doi:10.1007/s11356-023-29112-5
  • Steinberg, D. K., & Saba, G. K. (2008). Chapter 26 – Nitrogen Consumption and Metabolism in Marine Zooplankton. In D. G. Capone, D. A. Bronk, M. R. Mulholland, & E. J. Carpenter (Eds.), Nitrogen in the Marine Environment (Second Edition) (pp. 1135-1196). San Diego: Academic Press.
  • Tang, J., Wang, S., Tai, Y., Tam, N. F., Su, L., Shi, Y., . . . Zhang, X. (2020). Evaluation of factors influencing annual occurrence, bioaccumulation, and biomagnification of antibiotics in planktonic food webs of a large subtropical river in South China. Water Res, 170, 115302. doi:10.1016/j.watres.2019.115302
  • Tang, J., Wang, X., Yin, J., Han, Y., Yang, J., Lu, X., . . . Yang, Z. (2019). Molecular characterization of thioredoxin reductase in waterflea Daphnia magna and its expression regulation by polystyrene microplastics. Aquat Toxicol, 208, 90-97. doi:10.1016/j.aquatox.2019.01.001
  • Thirunavukkarasu, S., Vasanthi, R., Karunasagaran, G., & Munuswamy, N. (2020). Coastal water quality impact on community structure and genotoxicity of marine zooplankton. Regional Studies in Marine Science, 39, 101392. doi:https://doi.org/10.1016/j.rsma.2020.101392
  • Vroom, R. J. E., Koelmans, A. A., Besseling, E., & Halsband, C. (2017). Aging of microplastics promotes their ingestion by marine zooplankton. Environmental Pollution, 231, 987-996. doi:https://doi.org/10.1016/j.envpol.2017.08.088
  • Wang, C., Wang, Z., Zhang, Y., & Su, R. (2017). Interspecies Interactions Reverse the Hazard of Antibiotics Exposure: A Plankton Community Study on Responses to Ciprofloxacin hydrochloride. Scientific Reports, 7(1), 2373. doi:10.1038/s41598-017-02593-4
  • Wilkie Johnston, L., Bergami, E., Rowlands, E., & Manno, C. (2023). Organic or junk food? Microplastic contamination in Antarctic krill and salps. R Soc Open Sci, 10(3), 221421. doi:10.1098/rsos.221421
  • Yang, J., Zhang, X., Xie, Y., Song, C., Sun, J., Zhang, Y., . . . Yu, H. (2017). Ecogenomics of Zooplankton Community Reveals Ecological Threshold of Ammonia Nitrogen. Environmental Science & Technology, 51(5), 3057-3064. doi:10.1021/acs.est.6b05606 Zhao, J., Lan, R., Wang, Z., Su, W., Song, D., Xue, R., . . . Xing, B. (2023). Microplastic fragmentation by rotifers in aquatic ecosystems contributes to global nanoplastic pollution. Nature Nanotechnology. doi:10.1038/s41565-023-01534-9
Cover image of the book "Life as Basic Science: an overview and prospects for the future, Vol. 1" featuring DNA strands, human anatomy, marine life, plants, and nutritional supplements.
Life as Basic Science: an overview and prospects for the future, Vol. 1

How to Cite
Shantanabha Das, Puja Mishra, Atri Das (2024). Life in the Balance: Zooplankton’s Battle in a Changing Environment. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Ashis Kumar Panigrahi, Dr. Rose Stiffin and Dr. Jayata Kumar Das (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 1, pp. 17-29. ISBN: 978-81-969828-9-8 doi: https://doi.org/10.52756/lbsopf.2024.e01.002

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device