An Overview of Clothianidin, Dinotefuran and Thiacloprid on Aquatic Communities: Evaluating the Impacts of Environmental Risks Posed by Neonicotinoids

Anindita Nandy
Department of Zoology, Diamond Harbour Women’s University, Sarisha, South 24-Parganas – 743368, West Bengal, India

Priya Roy
Department of Zoology, Diamond Harbour Women’s University, Sarisha, South 24-Parganas – 743368, West Bengal, India

DOI: https://doi.org/10.52756/lbsopf.2024.e01.008

Keywords: Neonicotinoids, Aquatic Environment, Impact on Animal.

Abstract:
Effective pest management is one of the potential methods to boost crop output because pest infestations account for more than 45% of the annual loss in food production. In order to combat pests and diseases spread by vectors, a wide range of pesticides must be applied to crop plants. Currently, India is the largest producer of pesticides in Asia and ranks twelfth in the world for the use of pesticides. Numerous factors, including chemical classes, functional groups, modes of action, and toxicity, can be used to categories pesticides. Insecticides stand out because they are made to be poisonous to the organisms they are intended to kill. They may be hazardous to non-target creatures, such as fish, because many of their targets are substantially conserved across many taxa. The majority of insecticides used worldwide now are neonicotinoid pesticides, which make up 26% of the insecticide marketed globally. Neonicotinoid insecticides have historically been seen as the best alternatives to some insecticides (such as organophosphates and carbamates), in part because they were thought to have little environmental or non-target organism danger. They are nicotinic acetylcholine receptor agonists, which bind tightly to the nicotinic acetylcholine receptors (nAChRs) in the central nervous systems of insects. At low concentrations, they stimulate the nervous system; at higher concentrations, they block the receptors, cause paralysis, and cause death. Neonicotinoids are specifically more harmful to insects because they bind to insect nAChRs more strongly than they do to vertebrate nAChRs.

References:

  • Akter, S., Hulugalle, N. R., Jasonsmith, J., & Strong, C. L. (2023). Changes in soil microbial communities after exposure to neonicotinoids: A systematic review. Environmental Microbiology Reports15(6), 431-444.
  • Bass, C., & Field, L. M. (2018). Neonicotinoids. Current biology28(14), R772-R773.
  • Borsuah, J. F., Messer, T. L., Snow, D. D., Comfort, S. D., & Mittelstet, A. R. (2020). Literature review: Global neonicotinoid insecticide occurrence in aquatic environments. Water12(12), 3388.
  • Borsuah, J. F., Messer, T. L., Snow, D. D., Comfort, S. D., & Mittelstet, A. R. (2020). Literature review: Global neonicotinoid insecticide occurrence in aquatic environments. Water12(12), 3388.
  • Budge, G. E., Garthwaite, D., Crowe, A., Boatman, N. D., Delaplane, K. S., Brown, M. A., Thygesen, H.H., & Pietravalle, S. (2015). Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape. Scientific Reports5(1), 12574.
  • Buszewski, B., Bukowska, M., Ligor, M., & Staneczko-Baranowska, I. (2019). A holistic study of neonicotinoids neuroactive insecticides—properties, applications, occurrence, and analysis. Environmental Science and Pollution Research26, 34723-34740.
  • Cavallaro, M. C., Morrissey, C. A., Headley, J. V., Peru, K. M., & Liber, K. (2017). Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors. Environmental toxicology and chemistry36(2), 372-382.
  • Cimino, A. M., Boyles, A. L., Thayer, K. A., & Perry, M. J. (2017). Effects of neonicotinoid pesticide exposure on human health: a systematic review. Environmental health perspectives125(2), 155-162.
  • De, M., & Roy, C. (2019). Diverse role of Macrophytes in aquatic ecosystems: A brief review Mitu De, Chayanika Roy 2, Suchismita Medda 3, Sulagna Roy 4 and Santi Ranjan Dey 2. Int. J. Exp. Res. Rev19, 40-48.
  • Dutta, A., Madhu, N.R.,&   Behera, B. K. (2014). Population builds up and diversity of Odonate species in relation to food preference in a fish farming Lake at Media, West Bengal, India. Int. J. Adv. Res. Biol. Sci., 1(7), 199–203.
  • Ensley, S. M. (2018). Neonicotinoids. In Veterinary toxicology (pp. 521-524). Academic Press.
  • Goulson, D. (2013). An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology50(4), 977-987.
  • Guzman-Novoa, E., Cork, S., Hall, D. C., & Liljebjelke, K. (2016). Colony collapse disorder and other threats to honey bees. One health case studies, 5M Publishing LTD, 204-216.
  • Haloi, R., Chanda, D., Hazarika, J., & Barman, A. K. (2023). Statistical feature-based EEG signals classification using ANN and SVM classifiers for Parkinson’s disease detection. Int. J. Exp. Res. Rev31, 141-149.
  • Han, W., Tian, Y., & Shen, X. (2018). Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere192, 59-65.
  • Himeidan, Y. E., Kweka, E. J., & Temu, E. A. (2012). Insecticides for vector-borne diseases: Current use, benefits, hazard and resistance (pp. 683-708). London: INTECH Open Access Publisher.
  • Hong, X., Zhao, X., Tian, X., Li, J., & Zha, J. (2018). Changes of hematological and biochemical parameters revealed genotoxicity and immunotoxicity of neonicotinoids on Chinese rare minnows (Gobiocyprisrarus). Environmental Pollution233, 862-871.
  • Ivanišová, E., Mihaľ, M., & Kolesárová, A. (2022). Edible insects–history, characteristics, benefits, risks and future prospects for use. Int. J. Exp. Res27, 69-74.
  • Jeschke, P., & Nauen, R. (2008). Neonicotinoids—from zero to hero in insecticide chemistry. Pest Management Science: formerly Pesticide Science64(11), 1084-1098.
  • Madhu, N. R., Sarkar, B., Slama, P., Jha, N. K., Ghorai, S. K., Jana, S. K., Govindasamy, K., Massanyi, P., Lukac, N., Kumar, D., Kalita, J.C., Kesari, K.K., & Roychoudhury, S. (2022). Effect of environmental stressors, xenobiotics, and oxidative stress on male reproductive and sexual health. © The Author(s), under exclusive license to Springer International Publishing, S. Roychoudhury, K. K. Kesari (eds.), In Oxidative Stress and Toxicity in Reproductive Biology and Medicine: A Comprehensive Update on Male Infertility Volume II, pp. 33-58. ISBN: 978-3-031-12966-7 DOI: https://doi.org/10.1007/978-3-031-12966-7_3.
  • Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C., & Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environment international74, 291-303.
  • Osborne, J. L. (2012). Bumblebees and pesticides. Nature491(7422), 43-45.
  • Pang, S., Lin, Z., Zhang, W., Mishra, S., Bhatt, P., & Chen, S. (2020). Insights into the microbial degradation and biochemical mechanisms of neonicotinoids. Frontiers in microbiology11, 526444.
  • Pietrzak, D., Kania, J., Kmiecik, E., Malina, G., & Wątor, K. (2020). Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere255, 126981.
  • Ramadevi, R., Ramachandraiah, C., & Reddy, G. S. (2022). A Review on Contamination of Soil and Water by Neonicotinoid Pesticides and Trends it’s in Soil and Water Samples with Chromatographic Analytical Techniques. Oriental Journal of Chemistry38(2), 259-267.
  • Rangamani, T. P., Srinivasulu, M., Sreedevi, G., & Srinivas, T. (2023). Optimization and Removal of Heavy Metals from Groundwater Using Moringa Extracts and Coconut Shell Carbon Powder. Int. J. Exp. Res. Rev36, 89-98.
  • Saha, A., Mukherjee, P., Roy, K., Sen, K., & Sanyal, T. (2022). A review on phyto-remediation by aquatic macrophytes: a natural promising tool for sustainable management of ecosystem. International Journal of Experimental Research and Review27, 9-31.
  • Sánchez-Bayo, F. (2014). The trouble with neonicotinoids. Science346(6211), 806-807.
  • Sánchez-Bayo, F., Goka, K., & Hayasaka, D. (2016). Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Frontiers in Environmental Science4, 71.
  • Sarkar, B., & Madhu, N.R. (2016). Economic, social and environmental Sustainable Development. ‘Conservation of Biodiversity and Natural Resources in Sustainable Development’. Nectar Publisher, Kolkata. pp. 74-78. ISBN: 978- 93-84241-45-2.
  • Sparks, T. C. (2013). Insecticide discovery: an evaluation and analysis. Pesticide biochemistry and physiology107(1), 8-17.
  • Stara, A., Pagano, M., Albano, M., Savoca, S., Di Bella, G., Albergamo, A., Koutkova, Z., Sandova, M., Velisek, J., Fabrello, J., Matozzo, V., & Faggio, C. (2021). Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach. Environmental Pollution289, 117892.
  • Uneme, H. (2011). Chemistry of clothianidin and related compounds. Journal of Agricultural and Food Chemistry59(7), 2932-2937.
  • Velisek, J., & Stara, A. (2018). Effect of thiacloprid on early life stages of common carp (Cyprinus carpio). Chemosphere194, 481-487.
  • Verebová, V., & Staničová, J. (2021). The effect of neonicotinoid insecticides on the structure and stability of bio-macromolecules. In Insecticides-Impact and Benefits of Its Use for Humanity. IntechOpen.
  • Verebová, V., Želonková, K., Holečková, B., & Staničová, J. (2019). The effect of neonicotinoid insecticide thiacloprid on the structure and stability of DNA. Physiological Research68, S459-S466.
  • Wakita, T. (2011). Molecular design of dinotefuran with unique insecticidal properties. Journal of agricultural and food chemistry59(7), 2938-2942.
  • Wakita, T., Kinoshita, K., Kodaka, K., Yasui, N., Naoi, A., & Banba, S. (2004). Synthesis and structure-activity relationships of dinotefuran derivatives: modification in the tetrahydro-3-furylmethyl part. Journal of Pesticide Science29(4), 356-363.
  • Wakita, T., Kinoshita, K., Yamada, E., Yasui, N., Kawahara, N., Naoi, A., Nakaya, M., Ebihara, K., Matsuno, H. & Kodaka, K. (2003). The discovery of dinotefuran: a novel neonicotinoid. Pest Management Science: formerly Pesticide Science59(9), 1016-1022.
  • Wang, X., Anadon, A., Wu, Q., Qiao, F., Ares, I., Martinez-Larranaga, M. R., & Martinez, M. A. (2018). Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism. Annual review of Pharmacology and Toxicology58: 471-507.
  • Wang, X., Anadón, A., Wu, Q., Qiao, F., Ares, I., Martínez-Larrañaga, M. R., Yuan, Z., & Martínez, M. A. (2018). Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism. Annual review of Pharmacology and Toxicology58, 471-507.
  • Xiao, X., Clark, J. M., & Park, Y. (2017). Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food and chemical toxicology105, 456-474.
  • Yang, Y., Su, L., Huang, Y., Zhang, X., Li, C., Wang, J., & Zhao, Y. H. (2022). Bio-uptake, tissue distribution and metabolism of a neonicotinoid insecticide clothianidin in zebrafish. Environmental Pollution292, 118317.
  • Zhang, H., Ren, X., Liu, T., Zhao, Y., Gan, Y., & Zheng, L. (2023). The stereoselective toxicity of dinotefuran to Daphnia magna: A systematic assessment from reproduction, behavior, oxidative stress and digestive function. Chemosphere327, 138489.
  • Zhou, X., Yang, Y., Ming, R., Chen, H., Hu, D., & Lu, P. (2022). Insight into the differences in the toxicity mechanisms of dinotefuran enantiomers in zebrafish by UPLC-Q/TOF–MS. Environmental Science and Pollution Research29(47), 70833-70841. Zuščíková, L., Bažány, D., Greifová, H., Knížatová, N., Kováčik, A., Lukáč, N., & Jambor, T. (2023). Screening of toxic effects of neonicotinoid insecticides with a focus on acetamiprid: A review. Toxics11(7), 598.
Life as Basic Science: An Overview and Prospects for the Future
Volume: 1

How to Cite
Anindita Nandy and Priya Roy (2024). An Overview of Clothianidin, Dinotefuran and Thiacloprid on Aquatic Communities: Evaluating the Impacts of Environmental Risks Posed by Neonicotinoids. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Ashis Kumar Panigrahi, Dr. Rose Stiffin and Dr. Jayata Kumar Das (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 1, pp. 92-103. ISBN: 978-81-969828-9-8 DOI: https://doi.org/10.52756/lbsopf.2024.e01.008

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device