Phycotoxins produced by Harmful Algal Blooms (HABs) and their role in human poisoning: A review

Debkumar Sahoo
Coastal Environmental Studies Research Centre, Egra S.S.B. College, Purba Medinipur, Affiliated under Vidyasagar University, West Bengal, India
OrchideID Icon https://orcid.org/0009-0002-7075-3385

Santosh Kumar Bera
Coastal Environmental Studies Research Centre, Egra S.S.B. College, Purba Medinipur, Affiliated under Vidyasagar University, West Bengal, India
OrchideID Icon https://orcid.org/0000-0002-3862-3161

Prabad Pratim Pal
Coastal Environmental Studies Research Centre, Egra S.S.B. College, Purba Medinipur, Affiliated under Vidyasagar University, West Bengal, India
OrchideID Icon https://orcid.org/0009-0009-5809-5763

Dipak Kumar Tamili
Egra S. S. B. College, Purba Medinipur, West Bengal, India

Nithar Ranjan Madhu
Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, West Bengal, India
OrchideID Icon https://orcid.org/0000-0003-4198-5048

Sudipta Kumar Ghorai
Coastal Environmental Studies Research Centre, Egra S.S.B. College, Purba Medinipur, Affiliated under Vidyasagar University, West Bengal, India
OrchideID Icon https://orcid.org/0000-0003-3478-3632

Published online:30th November, 2024

DOI: https://doi.org/10.52756/lbsopf.2024.e03.001

Keywords: Phycotoxin, HABs, Domoic acid, Red tides or Green tides

Abstract:

Phycotoxins are highly potent natural toxins produced by specific marine algae and cyanobacteria during Harmful Algal Blooms (HABs), which often appear as water discolorations known as “Red Tides” or “Green Tides.” These toxins are classified based on their chemical structure, mode of action, target tissues, and biological effects on human health. They pose an ongoing threat to public health, marine ecosystems, and the economy, particularly through seafood contamination and water pollution. Managing their impact requires a multidisciplinary approach at both local and global levels. Historical cases highlight the severity of phycotoxin contamination. For instance, in 2015, a bloom of the toxigenic Pseudo-nitzschia species along the West Coast of North America led to domoic acid contamination in crabs and clams, prompting harvesting closures and consumer advisories from public health authorities. Similarly, in September 2016, elevated toxin levels resulted in the closure of razor clam and mussel harvesting along the Oregon coast. In another incident, massive cyanobacteria blooms in Florida led to drinking water bans in some areas due to contamination concerns. These events underscore the need for ongoing public health surveillance, environmental monitoring, and scientific research to mitigate risks associated with phycotoxins. Despite advancements in marine science, research on human exposure and long-term health consequences remains limited, even as toxigenic species blooms increase globally. Currently, diagnosis and management of phycotoxin poisoning rely heavily on clinical symptom interpretation, exposure history assessment, and identification of contamination sources. Several phycotoxins are neurotoxic, potentially fatal, or linked to chronic health effects. However, human intoxications often go misdiagnosed, underreported, or unrecognized by public health authorities, creating challenges for effective management and epidemiological tracking. To reduce risks, stronger regulatory frameworks, public health vigilance, and awareness among healthcare providers—especially in regions with frequent HAB occurrences—are crucial. However, certain populations face a higher risk of exposure, including recreational shellfish harvesters, anglers, children, and Indigenous coastal communities. Additionally, human poisoning incidents can arise globally due to the consumption of contaminated seafood, whether through travel or the importation of products from regions with insufficient food safety regulations and limited analytical testing. To address these challenges, continued research, improved diagnostic tools, and enhanced monitoring systems are essential for the early detection, prevention, and management of phycotoxin-related health risks.

References:

  • Alfonso, A., Vieytes, M., & Botana, L. (2016). Yessotoxin, a Promising Therapeutic Tool. Marine Drugs, 14(2), 30. https://doi.org/10.3390/md14020030
  • Anderson, D. M., Cembella, A. D., & Hallegraeff, G. M. (2012). Progress in Understanding Harmful Algal Blooms: Paradigm Shifts and New Technologies for Research, Monitoring, and Management. Annual Review of Marine Science, 4(1), 143–176. https://doi.org/10.1146/annurev-marine-120308-081121
  • Anderson, D. M., Keafer, B. A., Kleindinst, J. L., McGillicuddy, D. J., Martin, J. L., Norton, K., Pilskaln, C. H., Smith, J. L., Sherwood, C. R., & Butman, B. (2014). Alexandrium fundyense cysts in the Gulf of Maine: Long-term time series of abundance and distribution, and linkages to past and future blooms. Deep Sea Research Part II: Topical Studies in Oceanography, 103, 6–26. https://doi.org/10.1016/j.dsr2.2013.10.002
  • Azevedo, S. M. F. O., Carmichael, W. W., Jochimsen, E. M., Rinehart, K. L., Lau, S., Shaw, G. R., & Eaglesham, G. K. (2002). Human intoxication by microcystins during renal dialysis treatment in Caruaru—Brazil. Toxicology, 181–182, 441–446. https://doi.org/10.1016/s0300-483x(02)00491-2
  • Banack, S., Caller, T., Henegan, P., Haney, J., Murby, A., Metcalf, J., Powell, J., Cox, P., & Stommel, E. (2015). Detection of Cyanotoxins, β-N-methylamino-L-alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis. Toxins, 7(2), 322–336. https://doi.org/10.3390/toxins7020322
  • Bates, S.S. (2016). Domoic Acid and Pseudo-nitzschia. Fisheries and Oceans Canada.
  • Berdalet, E., Fleming, L. E., Gowen, R., Davidson, K., Hess, P., Backer, L. C., Moore, S. K., Hoagland, P., & Enevoldsen, H. (2015). Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. Journal of the Marine Biological Association of the United Kingdom, 96(1), 61–91. https://doi.org/10.1017/s0025315415001733
  • Biessy, L., Puddick, J., Wood, S.A., Selwood, A.I., Carbines, M., & Smith, K.F. (2022). First Report of Accumulation of Lyngbyatoxin-A in Edible Shellfish in Aotearoa New Zealand from Marine Benthic Cyanobacteria. Toxins16(12), 522. https://doi.org/10.3390/toxins16120522
  • Boushey, C. J., Delp, E. J., Ahmad, Z., Wang, Y., Roberts, S. M., & Grattan, L. M. (2016). Dietary assessment of domoic acid exposure: What can be learned from traditional methods and new applications for a technology assisted device. Harmful Algae, 57, 51–55. https://doi.org/10.1016/j.hal.2016.03.013
  • Bragg, W. A., Lemire, S. W., Coleman, R. M., Hamelin, E. I., & Johnson, R. C. (2015). Detection of human exposure to saxitoxin and neosaxitoxin in urine by online-solid phase extraction-liquid chromatography–tandem mass spectrometry. Toxicon, 99, 118–124. https://doi.org/10.1016/j.toxicon.2015.03.017
  • Brett, J., & Murnion, B. (2015). Pregabalin to treat ciguatera fish poisoning. Clinical Toxicology, 53(6), 588–588. https://doi.org/10.3109/15563650.2015.1052499
  • Brezeștean, I.A., Gherman, A.M.R., Colniță, A., Dina, N.E., Müller, Molnár, C., Marconi, D., Chiș, V., David, I.L., & Cîntă-Pînzaru, S. (2022). Detection and Characterization of Nodularin by Using Label-Free Surface-Enhanced Spectroscopic Techniques. International Journal of Molecular Sciences, 23(24), 15741. https://doi.org/10.3390/ijms232415741
  • Brooks, B. W., Lazorchak, J. M., Howard, M. D. A., Johnson, M.-V. V., Morton, S. L., Perkins, D. A. K., Reavie, E. D., Scott, G. I., Smith, S. A., & Steevens, J. A. (2016). Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environmental Toxicology and Chemistry, 35(1), 6–13. https://doi.org/10.1002/etc.3220
  • Carmichael, W. W., & Boyer, G. L. (2016). Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae, 54, 194–212. https://doi.org/10.1016/j.hal.2016.02.002
  • Chen, Y., Shen, D., & Fang, D. (2013). Nodularins in poisoning. Clinica Chimica Acta, 425, 18–29. https://doi.org/10.1016/j.cca.2013.07.005
  • Cho, B. T. (2006). Recent advances in the synthetic applications of the oxazaborolidine-mediated asymmetric reduction. Tetrahedron, 62(33), 7621-7643. https://doi.org/10.1016/j.tet.2006.05.036
  • Colas, S., Marie, B., Lance, E., Quiblier, C., Tricoire-Leignel, H., & Mattei, C. (2021). Anatoxin-a: Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target. Environmental Research, 193, 110590. https://doi.org/10.1016/j.envres.2020.110590
  • Corriere, M., Soliño, L., & Costa, P.R. (2021). Effects of the Marine Biotoxins Okadaic Acid and Dinophysistoxins on Fish. Journal of Marine Science and Engineering, 9(3), 293. https://doi.org/10.3390/jmse9030293
  • Diaz, J. H. (2015). Global incidence of rhabdomyolysis after cooked seafood consumption (Haff disease). Clinical Toxicology, 53(5), 421–426. https://doi.org/10.3109/15563650.2015.1016165
  • Díaz, P.A., & Figueroa, R.I.  (2023). Toxic Algal Bloom Recurrence in the Era of Global Change: Lessons from the Chilean Patagonian Fjords. Microorganisms, 11(8), 1874. https://doi.org/10.3390/microorganisms11081874.
  • Drobac, D., Tokodi, N., Simeunović, J., Baltić, V., Stanić, D., & Svirčev, Z. (2013). Human Exposure to Cyanotoxins and their Effects on Health. Archives of Industrial Hygiene and Toxicology, 64(2), 305–316. https://doi.org/10.2478/10004-1254-64-2013-2320
  • Farrer, D., Counter, M., Hillwig, R., & Cude, C. (2015). Health-Based Cyanotoxin Guideline Values Allow for Cyanotoxin-Based Monitoring and Efficient Public Health Response to Cyanobacterial Blooms. Toxins, 7(2), 457–477. https://doi.org/10.3390/toxins7020457
  • Ferrão-Filho, A. da S., & Kozlowsky-Suzuki, B. (2011). Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals. Marine Drugs, 9(12), 2729–2772. https://doi.org/10.3390/md9122729
  • Friedman, M. A., Fleming, L. E., Fernandez, M., Bienfang, P., Schrank, K., Dickey, R., Bottein, M.Y., Backer, L., Ayyar, R., Weisman, R., Watkins, S., Granade, R., & Reich, A. (2008). Ciguatera Fish Poisoning: Treatment, Prevention and Management. Marine Drugs, 6(3), 456–479. https://doi.org/10.3390/md6030456
  • Gad, S. E., & Gad, S. C. (2004). Saxitoxin. Encyclopedia of Toxicology (Second Edition), 769-770. https://doi.org/10.1016/B0-12-369400-0/00864-4
  • Glibert, P. M., Icarus Allen, J., Artioli, Y., Beusen, A., Bouwman, L., Harle, J., Holmes, R., & Holt, J. (2014). Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Global Change Biology, 20(12), 3845–3858. Portico. https://doi.org/10.1111/gcb.12662
  • Grattan, L. M., Boushey, C., Tracy, K., Trainer, V. L., Roberts, S. M., Schluterman, N., & Morris, J. G. (2016). The association between razor clam consumption and memory in the CoASTAL cohort. Harmful Algae, 57, 20–25. https://doi.org/10.1016/j.hal.2016.03.011
  • Hardy, F. J., Johnson, A., Hamel, K., & Preece, E. (2015). Cyanotoxin bioaccumulation in freshwater fish, Washington State, USA. Environmental Monitoring and Assessment, 187(11). https://doi.org/10.1007/s10661-015-4875-x
  • Hurley, W., Wolterstorff, C., MacDonald, R., & Schultz, D. (2014). Paralytic Shellfish Poisoning: A Case Series. Western Journal of Emergency Medicine, 15(4), 378–381. https://doi.org/10.5811/westjem.2014.4.16279
  • Ianora, A., Bentley, M. G., Caldwell, G. S., Casotti, R., Cembella, A. D., Engström-Öst, J., Halsband, C., Sonnenschein, E., Legrand, C., Llewellyn, C. A., Paldavičienë, A., Pilkaityte, R., Pohnert, G., Razinkovas, A., Romano, G., Tillmann, U., & Vaiciute, D. (2011). The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field. Marine Drugs, 9(9), 1625–1648. https://doi.org/10.3390/md9091625
  • Ibelings, B. W., Backer, L. C., Kardinaal, W. E. A., & Chorus, I. (2014). Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae, 40, 63–74. https://doi.org/10.1016/j.hal.2014.10.002
  • Jiang, L., Eriksson, J., Lage, S., Jonasson, S., Shams, S., Mehine, M., Ilag, L. L., & Rasmussen, U. (2014). Diatoms: A Novel Source for the Neurotoxin BMAA in Aquatic Environments. PLoS ONE, 9(1), e84578. https://doi.org/10.1371/journal.pone.0084578
  • Jeon, Y., Struewing, I., McIntosh, K., Tidd, M., Webb, L., Ryu, H., Mash, H., & Lu, J. (2024). Spatial and Temporal Variability of Saxitoxin-Producing Cyanobacteria in U.S. Urban Lakes. Toxins16(2), 70. https://doi.org/10.3390/toxins16020070
  • Katwa, P., & Brown, J. M. (2014). Pulmonary Mast Cells. Comparative Biology of the Normal Lung (Second Edition), 665-682. https://doi.org/10.1016/B978-0-12-404577-4.00034-5
  • Kinnear, S. (2010). Cylindrospermopsin: a decade of progress on bioaccumulation research. Mar Drugs, 8(3), 542-64. https://doi.org/10.3390/md8030542
  • Kirkley, K. S., Madl, J. E., Duncan, C., Gulland, F. M., & Tjalkens, R. B. (2014). Domoic acid-induced seizures in California sea lions (Zalophus californianus) are associated with neuroinflammatory brain injury. Aquatic Toxicology, 156, 259–268. https://doi.org/10.1016/j.aquatox.2014.09.003
  • Knaack, J. S., Porter, K. A., Jacob, J. T., Sullivan, K., Forester, M., Wang, R. Y., Trainer, V. L., Morton, S., Eckert, G., McGahee, E., Thomas, J., McLaughlin, J., & Johnson, R. C. (2016). Case diagnosis and characterization of suspected paralytic shellfish poisoning in Alaska. Harmful Algae, 57, 45–50. https://doi.org/10.1016/j.hal.2016.03.006
  • Koreivienė, J., Anne, O., Kasperovičienė, J., & Burškytė, V. (2014). Cyanotoxin management and human health risk mitigation in recreational waters. Environmental Monitoring and Assessment, 186(7), 4443–4459. https://doi.org/10.1007/s10661-014-3710-0
  • Lawrence, J., Loreal, H., Toyofuku, H., Hess, P., & Karunasagar, I. (2011). Assessment and management of biotoxin risks in bivalve molluscs. FAO Fisheries and Aquaculture Technical Paper, 551, 337.
  • Mattei, C., Vetter, I., Eisenblätter, A., Krock, B., Ebbecke, M., Desel, H., & Zimmermann, K. (2014). Ciguatera fish poisoning: A first epidemic in Germany highlights an increasing risk for European countries. Toxicon, 91, 76–83. https://doi.org/10.1016/j.toxicon.2014.10.016
  • Mazzillo, F., Pomeroy, C., Kuo, J., Ramondi, P., Prado, R., & Silver, M. (2010). Angler exposure to domoic acid via consumption of contaminated fishes. Aquatic Biology, 9, 1–12. https://doi.org/10.3354/ab00238
  • Méjean, A., Paci, G., Gautier, V., & Ploux, O. (2014). Biosynthesis of anatoxin-a and analogues (anatoxins) in cyanobacteria. Toxicon, 91, 15-22. https://doi.org/10.1016/j.toxicon.2014.07.016
  • Méjean, A., & Ploux, O. (2021). Biosynthesis of Cylindrospermopsin in Cyanobacteria: Characterization of CyrJ the Sulfotransferase. Journal of Natural Products, 84(2), 408–416. https://doi.org/10.1021/acs.jnatprod.0c01089
  • Nagai, H., Sato, S., Iida, K., Hayashi, K., Kawaguchi, M., Uchida, H., & Satake, M. (2019). Oscillatoxin I: A New Aplysiatoxin Derivative, from a Marine Cyanobacterium. Toxins, 11(6), 366. https://doi.org/10.3390/toxins11060366
  • Otero, A., Chapela, M.J., Atanassova, M., Vieites, J. M., & Cabado, A. G. (2011). Cyclic Imines: Chemistry and Mechanism of Action: A Review. Chemical Research in Toxicology, 24(11), 1817–1829. https://doi.org/10.1021/tx200182m
  • Paerl, H. (2014). Mitigating Harmful Cyanobacterial Blooms in a Human- and Climatically-Impacted World. Life, 4(4), 988–1012. https://doi.org/10.3390/life4040988
  • Paredes, I., Rietjens, I. M. C. M., Vieites, J. M., & Cabado, A. G. (2011). Update of risk assessments of main marine biotoxins in the European Union. Toxicon, 58(4), 336–354. https://doi.org/10.1016/j.toxicon.2011.07.001
  • Pelin, M., Brovedani, V., Sosa, S., & Tubaro, A. (2016). Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem. Marine Drugs, 14(2), 33. https://doi.org/10.3390/md14020033
  • Picot, C., Limon, G., Durand, G., Parent-Massin, D., & Roudot, A.C. (2012). Probabilistic dietary exposure to phycotoxins in a recreational shellfish harvester subpopulation (France). Journal of Exposure Science & Environmental Epidemiology, 23(4), 435–441. https://doi.org/10.1038/jes.2012.44
  • Pinto, A., Macário, I. P., Marques, S. M., Lourenço, J., Domingues, I., Botelho, M. J., Asselman, J., Pereira, P., & Pereira, J. L. (2024). A short-term exposure to saxitoxin triggers a multitude of deleterious effects in Daphnia magna at levels deemed safe for human health. Science of The Total Environment, 951, 175431. https://doi.org/10.1016/j.scitotenv.2024.175431
  • Pírez, M., Gonzalez-Sapienza, G., Sienra, D., Ferrari, G., Last, M., Last, J. A., & Brena, B. M. (2013). Limited analytical capacity for cyanotoxins in developing countries may hide serious environmental health problems: Simple and affordable methods may be the answer. Journal of Environmental Management, 114, 63–71. https://doi.org/10.1016/j.jenvman.2012.10.052
  • Pulido, O. M. (2016). Phycotoxins by Harmful Algal Blooms (HABS) and Human Poisoning: An Overview. International Clinical Pathology Journal, 2(6), 145-152. https://doi.org/10.15406/icpjl.2016.02.00062
  • Raja, R., Hemaiswarya, S., Ganesan, V., & Carvalho, I.S. (2015). Recent developments in therapeutic applications of Cyanobacteria. Crit. Rev. Microbiol., 42(3), 394-405.
  • https://doi.org/10.3109/1040841X.2014.957640
  • Schroeder, G., & S Bates, S. (2015). Amnesic Shellfish Poisoning: Emergency Medical Management. Journal of Marine Science: Research & Development, 06(01). https://doi.org/10.4172/2155-9910.1000179
  • Stoner, O., Economou, T., & Brown, A. R. (2024). Seasonal Early Warning of Impacts of Harmful Algal Blooms on Farmed Shellfish in Coastal Waters of Scotland. Water Resources Research, 60(10). Portico. https://doi.org/10.1029/2023wr034889
  • Tang, J., He, X., Chen, J., Cao, W., Han, T., Xu, Q., & Sun, C. (2024). Occurrence and distribution of phycotoxins in the Antarctic Ocean. Marine Pollution Bulletin, 201, 116250. https://doi.org/10.1016/j.marpolbul.2024.116250
  • Thompson, T. M., Theobald, J., Lu, J., & Erickson, T. B. (2014). The general approach to the poisoned patient. Disease-a-Month, 60(11), 509–524. https://doi.org/10.1016/j.disamonth.2014.10.002
  • Tubaro, A., Dell’Ovo, V., Sosa, S., & Florio, C. (2010). Yessotoxins: A toxicological overview. Toxicon, 56(2), 163–172. https://doi.org/10.1016/j.toxicon.2009.07.038
  • Twiner, M.J., Doucette, G.J., Rasky, A., Huang, X.P., Roth, B.L., & Sanguinetti, M.C. (2012). Marine algal toxin azaspiracid is an open-state blocker of hERG potassium channels. Chem. Res. Toxicol., 25(9), 1975-84. https://doi.org/10.1021/tx300283t
  • Weirich, C. A., & Miller, T. R. (2013). Freshwater Harmful Algal Blooms: Toxins and Children’s Health. Current Problems in Pediatric and Adolescent Health Care, 44(1), 2-24. https://doi.org/10.1016/j.cppeds.2013.10.007
  • Wieringa, A., Bertholee, D., Ter Horst, P., van den Brand, I., Haringman, J., & Ciminiello, P. (2014). Respiratory impairment in four patients associated with exposure to palytoxin containing coral. Clinical Toxicology, 52(2), 150–151. https://doi.org/10.3109/15563650.2013.878867
  • Yan, B., Liu, Z., Huang, R., Xu, Y., Liu, D., Wang, W., Zhao, Z., Cui, F., & Shi, W. (2020). Impact factors on the production of β-methylamino-L-alanine (BMAA) by cyanobacteria. Chemosphere, 243, 125355. https://doi.org/10.1016/j.chemosphere.2019.125355
  • Yang, J., Sun, W., Sun, M., Cui, Y., & Wang, L. (2024). Current Research Status of Azaspiracids. Marine Drugs, 22(2), 79. https://doi.org/10.3390/md22020079
  • Zanchett, G., & Oliveira-Filho, E. (2013). Cyanobacteria and Cyanotoxins: From Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects. Toxins, 5(10), 1896–1917. https://doi.org/10.3390/toxins5101896

check for update

Life as Basic Science: An Overview and Prospects for Future [Volume: 3]

How to Cite
Debkumar Sahoo, Santosh Kumar Bera, Prabad Pratim Pal, Dipak Kumar Tamili, Nithar Ranjan Madhu and Sudipta Kumar Ghorai (2024). Phycotoxins produced by Harmful Algal Blooms (HABs) and their role in human poisoning: A review. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Jayanta Kumar Das, Dr. Mayur Doke and Dr. Vincent Avecilla (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 3, pp. 01-19. ISBN: 978-81-978955-7-9
DOI: https://doi.org/10.52756/lbsopf.2024.e03.001

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device