Sustainable Management of Organic Wastes to Enhance Soil Health via Vermicomposting
Sruti Karmakar
Department of Environmental Science, Asutosh College, 92 S.P. Mukherjee Road, Kolkata-700026, West Bengal, India
Rakesh Acharya
Department of Zoology, Jhargram Raj College, Jhargram, West Bengal, India
Debnarayan Roy, WBSES
Principal, (Formerly, Department of Zoology), Jhargram Raj College, Jhargram, West Bengal, India
Koushik Sen
Department of Zoology, Jhargram Raj College, Jhargram, West Bengal, India
https://orcid.org/0000-0002-6995-7682
Published online:08 August, 2024
DOI: https://doi.org/10.52756/boesd.2024.e03.001
Keywords: Organic waste, Earthworm, Vermicomposting, Soil health, Soil productivity
Abstract:
Vermicomposting is the process of converting large amounts of organic waste into organic fertilizer using earthworms. This straightforward biotechnological method utilizes specific species of earthworms to transform waste into a superior end product. Vermicomposting is an efficient waste management technique, as it produces high-quality manure quickly and yields a nutritionally rich and biologically active product at a reasonable cost. The resulting vermicompost is a highly nutritive, humus-like organic fertilizer rich in macronutrients and micronutrients. It plays a crucial role in enhancing the growth and yield of crops. The effective utilization of waste materials through vermicomposting not only supports sustainable nutrient management and the maintenance of soil health in agricultural soils but also helps in reducing environmental pollution caused by waste. This review aims to raise awareness about generating value from waste through vermicomposting.
References:
- Addabdo, T. D. (1995). The nematicidal effect of organic amendments: a review of the literature 1982–1994. Nematologia Mediterranea, 23, 299–305.
- Aira, M., Gómez-Brandón, M., González- Porto, P., and Domínguez, J. (2011). Selective reduction of the pathogenic load of cow manure in an industrial-scale continuous-feeding vermireactor. Bioresource Technology, 102, 9633–9637. https: //doi.org/10.1016/j.biortech.2011.07.115
- Aira, M., Monoroy, F., Dominguez, J., & Mato, S. (2002). How earthworm density affects microbial biomass and activity in pig manure. European Journal of Soil Biology, 38, 7-10. https://doi.org/10.1016/S1164-5563(01)01116-5
- Ali, M. S., & Jahan, M. S. (2001). Final completion report on Coordinate project of Vermiculture: Production of Vermicompost and its use in Upland and Horticultural Crops. BARC, Dhaka, 21.
- Alshehrei, F., & Ameen, F. (2021). Vermicomposting: A management tool to mitigate solid waste. Saudi Journal of Biological Sciences, 28(6), 3284-3293.
- Anonymous, (2001). Vermicompost as an insect repellent. Biocycle, 01, 19.
- Atiyeh, R.M., Arancon, N., Edwards, C.A., & Metzger, J.D. (2000). Influence of earthworm-processed pig manure on the growth and yield of green house tomatoes. Bioresource Technology, 75, 175–180.https://doi.org/10.1016/S0960-8524(00) 00064-X.
- Atiyeh, R.M., Arancon, N.Q., Edwards, C.A., & Metzger, J.D. (2002a). The influence of earthworm-processed pig manure on the growth and productivity of marigolds. Bioresource Technology, 81, 103–108. https://doi.org/10.1016/S0960-8524(01) 001 22-5
- Awomeso, J. A., Taiwo, A. M., Gbadebo, A. M., & Arimoro, A. O. (2010).Waste Disposal and Pollution Management in Urban Areas: A Workable Remedy for the Environment in Developing Countries. American Journal of Environmental Sciences, 6(1), 26-32. https://doi.org/10.3844/ajessp.2010.26.32
- Bajsa, O., Nair, J., Mathew, K., & Ho, G. E. (2004). Vermiculture as a tool for domestic waste water management. Water Science Technology, 48, 125–132.
https://doi.org/10.2166/wst.2004.0821 - Bandyopadhyay, A., Sinha, A., Thakur, P., Thakur, S., & Ahmed, M. (2023). A review of soil pollution from LDPE mulching films and the consequences of the substitute biodegradable plastic on soil health. Int. J. Exp. Res. Rev., 32, 15-39.
https://doi.org/10.52756/ijerr.2023.v32.002 - Bansal, S., & Kapoor, K. K. (2000). Vermicomposting of crop residues and cattle dung with Eisenia foetida. Bioresource Technology, 73, 95-98. https://doi.org/10.1016/S0960-8524(99)00173-X
- Bayu, W. N., Rethman, F. G., Hammes, P. S., & Alemu, G. (2006). Effects of Farmyard Manure and Inorganic Fertilizers on Sorghum Growth, Yield and Nitrogen use in a Semi-arid area of Ethiopia. Journal of Plant Nutrition, 29(2), 391-407. https://doi.org/10.1080/01904160500320962
- Belay, A., Classens, A. S., Wehner, F. C., & De Beer, J. M. (2001). Influence of residual manure on selected nutrient elements and microbial composition of soil under long–term crop rotation. South African Journal of Plant and Soil, 18, 1-6. https://doi.org/10.1080/02571862.2001.10634392
- Benitz, E., Sianz, H., & Nogales, R. (2005). Hydrolytic enzyme activities of extracted humic substances during the vermicomposting lignocelulosic olives waste. Bioresource Technology, 96, 785-790. https://doi.org/10.1016/j.biortech.2004.08.010
- Bharadwaj, A. (2010).Management of Kitchen Waste Material through Vermicomposting. Asian Journal of Experimental Biological Sciences, 1(1), 175-177.
- Bhardwaj, I., Kumar, V., & Verma, R. (2023). Vermicompost and Rhizobacteria in Organic Agriculture: A Review of their Impacts on Plant Growth and Soil Health, Journal of eco- friendly agriculture, 18(2), 219–229. https://doi.org/10.48165/jefa.2023.18.02.1
- Bhat, S. A., Singh, J., &Vig, A. P. (2017). Instrumental characterization of organic wastes for evaluation of vermicompost maturity. Journal of Analytical Science and Technology, 8(1), 1-12. https://doi.org/10.1186/s40543-017-0112-2
- Binet, F., Fayolle, L., & Pussard, M. (1998). Significance of earthworms in stimulating soil microbial activity, Biology and Fertility of Soils, 27, 79-84.
https://doi.org/10.1007/s003740050403 - Blanchard, O. (2009). Macroeconomics. Boston: Pearson Education, Inc.
- Bourioug, M., Alaoui-Sossé, L., Laffray, X., Raouf, N., Benbrahim, M., Badot, P.M., & Alaoui-Sossé, B. (2014). Evaluation of sewage sludge effects on soil properties, plant growth, mineral nutrition state, and heavy metal distribution in European larch seedlings (Larix decid). Arab. J. Sci. Eng., 39, 5325–5335.https://doi.org/10.1007/s13369-014-1100-0
- Brown, G. G. (1995). How do earthworms affect microfloral and faunal community diversity? Journal of Plant and Soil, 170, 209-231. https://doi.org/10.1007/BF02183068
- Buta, M., Hubeny, J., Zielinski, W., Harnisz, M., & Korzeniewska, E. (2021). Sewage sludge in agriculture – the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops – a review. Ecotoxicol. Environ. Saf., 214, 112070 https://doi.org/10.1016/j.ecoenv.2021.112070.
- Campitelli, P. A., Velasco, M. I., & Ceppi, S. B. (2006). Chemical and physicochemical characteristics of humic acids extracted from compost, soil and amended soil. Talanta, 69, 1234–1239. https://doi.org/10.1016/j.talanta.2005.12.048
- Chaoui, H. I., Zibilske, L. M., & Ohno, T. (2003). Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biology and Biochemistry, 35(2), 295-302. https://doi.org/10.1016/S0038-0717(02)00279-1
- Das, A., Saha, A., Sarkar, S., Sadhu, S., Sur, T., Agarwal, S., Mazumdar, S., Bashar, S., Tarafdar, S., & Parvez, S. S. (2022). A multidimensional study of wastewater treatment. Int. J. Exp. Res. Rev., 28, 30-37. https://doi.org/10.52756/ijerr.2022.v28.005
- Desai, V. R, Sabale, R. N., & Raundal, P. V. (1999). Integrated nitrogen management in wheat-coriander cropping system. Journal of Maharasthra Agricultural Universities, 24(3), 273–275.
- Devi, D., & Agarwal, S. K. (1998). Performance of sunflower hybrids as influenced by organic manure and fertilizer. Journal of Oilseeds Research, 15(2), 272–279.
- Dominguez, J. (2004). State of the art and new perspectives on vermicomposting research. In: C.A. Edwards, ed. Earthworm Ecology. U.S.A: CRC Press; Boca Raton, FL, 401–424.
- Dume, B., Hanc, A., Svehla, P., Michal, P., Chane, A.D., & Nigussie, A. (2022). Vermicomposting Technology as a Process Able to Reduce the Content of Potentially Toxic Elements in Sewage Sludge. Agronomy, 12, 2049. https://doi.org/10.3390/ agronomy12092049
- Edwards, C. A. (1998). The use of earthworms in the breakdown and management of organic wastes. In: Edwards, C. A. ed. Earthworm Ecology. U.S.A: CRC Press, Boca Raton, FL, pp. 327–354.
- Edwards, C. A., & Arancon, N. (2004). Vermicompost suppress plant pests and disease attacks. Biocycle, 45(3), 51-54.
- Edwards, C. A., & Burrows, I. (1988). The Potential of Earthworm Composts as Plant Growth Media. The Netherlands: SPB Academic Publishing, The Hague.
- Edwards, C. A., & Fletcher, K. E. (1988). Interaction between earthworms and microorganisms in organic matter breakdown. Agriculture, Ecosystems and Environment, 20(3), 235–249. https://doi.org/10.1016/0167-8809(88)90069-2
- Edwards, C. A., Dominguez, J., & Arancon, N. Q. (2004). The influence of vermicomposts on plant growth and pest incidence. In: S. H. Shakir and W. Z. A. Mikhail, eds. Soil Zoology for Sustainable Development in the 21st Century. Egypt: Self-Publisher, Cairo, pp. 397–420.
- Edwards, C.A. (2011). Human pathogen reduction during vermicomposting. In: Edwards, C.A., Arancon, N.Q., Sherman, R. (Eds.), Vermiculture Technology: Earthworms, Organic Wastes and Environmental Management. CRC Press, Boca Raton, pp. 249–261.
- Erfani, H., Madhu, N.R., Khodayari, S., Qureshi, M.A., Swetanshue, Singh, P., & Jadoun, S. (2024). Separation and removal of oil from water/wastewater in the oil industry: a review. Environmental Technology Reviews, 13(1), 325–343.
https://doi.org/10.1080/21622515.2024.2343129. - Esmaeili, A., Khoram, M. R., Gholami, M. and Eslami, H. (2020). Pistachio waste management using combined composting-vermicomposting technique: Physico-chemical changes and worm growth analysis. Journal of Cleaner Production. 118523. https://doi:10.1016/j.jclepro.2019.118523.
- Fernando, K.M.C., & Arunakumara, K.K.I.U. (2021) Sustainable organic waste management and nutrients replenishment in the soil by vermicompost: A review. Agrieast, 15(2), 32–51. https://doi.org/10.4038/agrieast.v15i2.105
- Gajalakshmi, S., Ramasamy, E. V., & Abbasi, S. A. (2002). High-rate composting– vermicomposting of water hyacinth (Eichhornia crassipes Mart. Solms). Bioresource Technology, 83, 235-239. https://doi.org/10.1016/S0960-8524(01)00216-4
- Gandhi, M., Sangwan, V., Kapoor, K. K., & Dilbaghi, N. (1997). Composting of household wastes with and without earthworms. Environment and Ecology, 15(2), 432–434.
- Garg, V.K., & Kaushik, P. (2004). Dynamics of biological and chemical parameter during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues. Bioresource Technollogy, 94, 203-209.
https://doi.org/10.1016/j.biortech.2003.10.033 - George, S., & Pillai, G. R. (2000). Effect of vermicompost on yield and economics of guinea grass grown as an intercrop in coconut gardens. Indian Journal of Agronomy, 45(4), 693-697. https://doi.org/10.59797/ija.v45i4.3431
- Ghoshal, S. (2017). Biotransformation potentiality of Eisenia foetida for beneficial eco-friendly technology for improving soil fertility. Int. J. Exp. Res. Rev., 9, 1-4. Retrieved from https://qtanalytics.in/journals/index.php/IJERR/article/view/1299
- Gondar, D., Lopez, R., Fiol, S., Antelo, J. M., & Arce, F. (2005). Characterization and acid–base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma, 126, 367–374. https://doi.org/10.1016/j.geoderma.2004.10.006
- Gopal, M., Bhute, S.S., & Gupta, A. (2017). Changes in structure and function of bacterial communities during coconut leaf vermicomposting. Antonie van Leeuwenhoek, 110, 1339-1355. https://doi.org/10.1007/s10482-017-0894-7
- Guerrero, R. D. III. (1979). The Potential of Earthworm Culture. Greenfields.
- Guerrero, R. D. III. (2009). Vermicompost and Vermimeal Production. MARID Agribusiness Technology Guide, 22.
- Gutie´rrez-Miceli, F. A., Moguel-Zamudio, B., Abud-Archila, M., Gutie´rrez-Oliva, V. F., and Dendooven, L. (2008). Sheep manure vermicompost supplemented with a native diazotrophic bacteria and mycorrhizas for maize cultivation. Bioresource Technology, 99, 7020–7026. https://doi.org/10.1016/j.biortech.2008.01.012
- Hema, S., & Rajkumar, N. (2012). An assessment of Vermicomposting technology for disposal of vegetable waste along with industrial effluents. Journal of Environmental Science, Computer Science and Engineering & Technology, 1(1), 5-8.
- Hemalatha, B., Sashikkumar, M. C., Vivek, S., Ramesh, S., Dinesh Babu, M., Laxmipriya, S., & Priya, V. 2024. Experimental study of biodegradability of organic waste with industrial waste combined with effluents: A comparison by vermicomposting technology. Global NEST Journal, 26(3).
- Hoitink, H. A. J., & Fahy, P. C. (1986). Basis for the control of soilborne plant pathogens with composts. Annual Review of Phytopathology, 24, 93–114.
https://doi.org/10.1146/annurev.py.24.090186.000521 - Houben, D., Evrard, L. and Sonnet, P. (2013). Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Bioenergy, 57, 196–204.
https://doi.org/10.1016/j.biombioe.2013.07.019 - Imam, A., Mohammed, B., Wilson, D. C., & Cheeseman, C. R. (2008). Solid Waste Management in Abuja, Nigeria. Waste Management, 28, 468-472.
https://doi.org/10.1016/j.wasman.2007.01.006 - Jeyabal, A., & Kuppuswamy, G. (2001). Recycling of organic wastes for the production of vermicompost and its response in rice–legume cropping system and soil fertility. European Journal of Agronomy, 15(3),153-170. https://doi.org/10.1016/S1161-0301(00)00100-3
- Karmegam N., Alagermalai K., & Daniel, T. (1999). Effect of vermicompost on the growth and yield of greengram (Phaseolus aureus Rob.). Tropical Agriculture, 76(2), 143–146.
- Karmegam, N., & Daniel, T. (2000). Effect of biodigested slurry and vermicompost on the growth and yield of cowpea [Vigna unguiculata (L.)]. Environment and Ecology, 18(2), 367–370.
- Kaseva, M. E., & Mbuligwe, S. E. (2005). Appraisal of Solid Waste Collection following Private Sector Involvement in Dar es Salaam City, Tanzania. Journal Habitat Ineternational, 29, 353-366. https://doi.org/10.1016/j.habitatint.2003.12.003
- Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. World Bank Publications. https://doi.org/10.1596/978-1-4648-1329-0
- Khan, A., & Ishaq, F. (2011). Chemical nutrient analysis of different composts (Vermicompost and Pitcompost) and their effect on the growth of a vegetative crop Pisum sativum. Asian Journal of Plant Science and Research, 1(1), 116-130.
- Lakshmi, B. L., & Vizaylakshmi, G. S. (2000). Vermicomposting of Sugar Factory Filter Pressmud Using African Earthworms Species (Eudrillus eugeniae). Journal of Pollution Research, 19(3), 481-483.
- Lal, O. P., Srivastava, Y. N., & Sinha, S. R. (2003). Vermicomposting. Indian Farming, 52, 6-8.
- Latare, A.M., Kumar, O., Singh, S.K., & Gupta, A. (2014). Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system. Ecol. Eng., 69, 17–24. https://doi.org/10.1016/j.ecoleng.2014.03.066
- Lazcano, C., Revilla, P., Malvar, R. A., & Domínguez, J. (2011). Yield and fruit quality of four sweet corn hybrids (Zea mays) under conventional and integrated fertilization with vermicompost. Journal of the Science of Food and Agriculture,91(7), 1244–1253. https://doi.org/10.1002/jsfa.4306
- Li, L.X.Y., Xu, Z.L., Wu, J.Y., & Tian, G.M. (2010). Bioaccumulation of heavy metals in the earthworm Eisenia fetida in relation to bioavailable metal concentrations in pigmanure. Bioresour. Technol., 101, 3430–3436. https://doi.org/10.1016/j.biortech.2009.12.085
- Lim, S. L., Lee, L. H., & Wu, T.Y. (2016). Sustainability of using composting andvermicomposting technologies for organic solid waste biotransformation: recent overview,greenhouse gases emissions and economic analysis. Journal of Cleaner Production, 111, 262-278. https://doi.org/10.1016/j.jclepro.2015.08.083
- Lv, B.Y., Xing, M.Y., & Yang, J. (2016). Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresour.Technol., 209, 397–401. https://doi.org/10.1016/j.biortech.2016.03.015
- Makinde, E. A., Agboola, A. A., & Oluwatoyinbo, F. I. (2001). The effects of organic and inorganic fertilizers on the growth and yield of maize in a maize/melon intercrop. Moor Journal of Agricultural Research, 2, 15-20.
- Mane, T. T., & Raskar Smita, S. (2012). Management of Agriculture Waste from Market yard Through Vermicomposting. Research Journal of Recent Sciences, 1(ISC-2011), 289-296.
- Masciandaro, G., Ceccanti, B., Ronchi, V., & Bauer, C. (2000). Kinetic parameters of dehydrogenase in the assessment of the response of soil to vermicompost and inorganic fertilizers. Biology and Fertility of Soils. 32, 479–483.
https://doi.org/10.1007/s003740000280 - Mohan, S., & Joseph, C. P. (2021). Potential Hazards due to Municipal Solid Waste Open Dumping in India. Journal of the Indian Institute of Science, 101(4), 523-536. https://doi.org/10.1007/s41745-021-00242-4
- Monroy, F., Aira, M. and Domínguez, J. (2008). Changes in density of nematodes, protozoa and total coliforms after transit through the gut of four epigeic earthworms (Oligochaeta). Applied Soil Ecology, 39(2), 127–132.
- Monroy, F., Aira, M., and Domínguez, J. (2009). Reduction of total coliform numbers during vermicomposting is caused by short-term direct effects of earthworms on microorganisms and depends on the dose of application of pig slurry. Science of the Total Environment, 407, 5411–5416. https://doi.org/10.1016/j.scitotenv.2009.06.048.
- Nahmani, J., Hodson, M.E., & Black, S. (2007). A review of studies performed to assess metal uptake by earthworms. Environ. Pollut., 145, 402–424.
https://doi.org/10.1016/j.envpol.2006.04.009 - Ndegwa, P. M., & Thompson, S. A. (2001). Integrating composting and vermicomposting the treatment and bioconversion of Biosolids. Bioresource Technology, 76, 107-112. https://doi.org/10.1016/S0960-8524(00)00104-8
- Ndegwa, P. M., Thompson, S. A., & Das, K. C. (2000). Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresource Technology,71, 5-12. https://doi.org/10.1016/S0960-8524(99)00055-3
- Nethra, N. N., Jayaprasad, K. V., & Kale, R. D. (1999). China aster [Callistephus chinensis L.] cultivation using vermicompost as organic amendment. Crop Research, Hisar, 17(2), 209–215.
- Nourbakhsh, F. (2007). Influence of Vermicomposting on soil waste decomposition kinetics in soils. Journal of Zhejiang University Science, 8, 725-730.
https://doi.org/10.1631/jzus.2007.B0725 - Palaniappan, S. P., & Annadurai, K. (2008). Organic farming: Theory and Practice. Jodhpur:Scientific Publisers (India).
- Patil, S. L., & Sheelavantar, M. N. (2000). Effect of moisture conservation practices, organic sources and nitrogen levels on yield, water use and root development of rabi sorghum [Sorghum bicolor (L.)] in the vertisols of semiarid tropics. Annals of Agricultural Research, 21(21), 32–36.
- Prabha, L. M., Jayraaj, I. A., & Jeyaraaj, R. (2005). Macro and Micronutrient changes in vermicomposting of vegetable wastes using Eudrilus eugeniae. South Asian Journal of Socio-Political Studies, 2, 129-130.
- Quadar, J., Chowdhary, A. B., Khan, M. A., Singh, S., Kumar, R., & Singh, J. (2022). Role of Earthworms in Agro-Industrial Waste Management and Sustainable Agriculture. Life Sciences Research and Development, 83.
- Rathi, S., (2006). Alternative Approaches for Better Municipal Solid Waste Management in Mumbai, India. Waste Management, 26, 1192-1200.
https://doi.org/10.1016/j.wasman.2005.09.006 - Rodriguez Navarro, J. A., Zavaleta, Mejia, E., & Sanchez, G.P. (2000). The effect of vermicompost on plant nutrition, yield and incidence of root and crown rot of gerbera. Fitopatologia, 35(1), 66-79.
- Santra, S. C., Mallick, A., & Samal, A. C. (2015). Biofertilizer for bioremediation. Recent trends in biofertilizers. IK International Publishing House Pvt. Ltd, 205-234.
- Sharma, A. R., & Mittra, B. N. (1991). Effect of different rates of application of organic and nitrogen fertilizers in a rice-based cropping system. Journal of Agricultural Science (Cambridge), 117, 313-318. https://doi.org/10.1017/S0021859600067046
- Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, pp. 1-23. https://doi.org/10.1007/s11356-022-21578-z
- Singh, D., & Suthar, S. (2012). Vermicomposting of herbal pharmaceutical industry waste: Earthworm growth, plant-available nutrient and microbial quality of end materials. Bioresource Technology, 112, 179–185. https://doi.org/10.1016/j.biortech.2012.02.101
- Singh, K. (2009). Microbial and Nutritional Analysis of Vermicompost, Aerobic and Anaerobic Compost. Project Report for Master in Environmental Engineering, Griffith University, Brisbane, Australia.
- Sinha, R.K., Heart, S., Agarwal, S., Asadi, R., Carretero, E. (2002). Vermiculture and waste management: study of action of earthworms Elsinia foetida, Eudrilus euginae and Perionyx excavatus on biodegradation of some community waste in India and Australia. Environmentalist, 22, 261–268. https://doi.org/10.1023/A:1016583929723.
- Sizmur, T., & Hodson, M.E. (2009). Do earthworms impact metal mobility and availability in soil?—A review. Environ Pollut., 157, 1981–1989.
https://doi.org/10.1016/j.envpol.2009.02.029 - Sudhakar, G., Christopher Lourdura, A., Rangasamy, A., Subbian, P., & Velayuthan, A. (2002). Effect of vermicompost application on the soil properties, nutrient availability, uptake and yield of rice – A Review. Agricultural Review, 23(2), 127-133.
- Suhane, R. K. (2007). Vermicompost. Bihar: Publication of Rajendra Agriculture University, Pusa, pp. 88.
- Suthar, S. (2006). Potential utilization of Guar gum industrial wastes in vermicomposts productions. Bioresource Technology, 97, 2474-2477.
https://doi.org/10.1016/j.biortech.2005.10.018 - Suthar, S. (2008). Bioconversion of post-harvest crop residues and cattle shed manure into value added products using earthworm Eudrilus eugeniae (King berg). Ecological Engineering, 32, 206-214. https://doi.org/10.1016/j.ecoleng.2007.11.002
- Talashilkar, S. C., Bhangarath, P. P., & Mehta, V. P. (1999). Changes in chemical properties during composting of organic residues as influenced by earthworm activity. Journal of the Indian Society of Soil Science, 47, 50–53.
- Tawarah, A. B., Alasasfa, A. M., & Mahadeen, Y. A. (2024). Efficacy of Compost and Vermicompost on Growth, Yield and Nutrient Content of Common Beans Crop (Phaseolus vulgaris L.). Journal of Ecological Engineering, 25(2), 215–226.
- Thakur, D., Jha, A., Chattopadhyay, S., & Chakraborty, S. (2021). A review on opportunities and challenges of nitrogen removal from wastewater using microalgae. Int. J. Exp. Res. Rev., 26, 141-157. https://doi.org/10.52756/ijerr.2021.v26.011
- Thirunavukkarasu, A., Sivashankar, R., Nithya, R., Sathya, A. B., Priyadharshini, V., Prem, K. B., Muthuveni, M., & Krishnamoorthy, S. (2023). Sustainable organic waste management using vermicomposting: a critical review on the prevailing research gaps and opportunities. Environmental Science Processes & Impacts, https://doi.org/10.1039/D2EM00324D
- Tomar, V. K., Bhatnagar, R. K., & Palta, R. K. (1998). Effect of vermicompost on production of brinjal and carrot. Bhartiya Krishi Anusandhan Patrika, 13(3/4), 153-156.
- Tomati, V., Grappelli, A and Galli, E., 1985. The presence of growth regulators in earthworm worked wastes. In: Proceeding of International Symposium on ‘Earthworms’, Italy, 31 March-5 April,1985.
- Tu, J.C., Zhao, Q.J., Wei, L.L., & Yang, Q.Q. (2012). Heavy metal concentration and speciation of seven representative municipal sludge’s from wastewater treatment plants in Northeast China. Environ. Monit. Assess., 184, 1645–1655.
https://doi.org/10.1007/s10661-011-2067-x - Vadiraj, B. A., Siddagangaiah, D.,& Potty, S. N. (1998). Response of coriander (Coriandrum sativum L.) cultivars to graded levels of vermicompost. Journal of Spices and Aromatic Crops, 7(2), 141–143.
- Varian, H. R. (2010). Intermediate Microeconomics: A Modern Approach. New York: W.W. Norton and Company.
- Villar, I., Alves, D., Pérez-Díaz, D., & Mato, S. (2016). Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge. Waste Manag., 48, 409–417. https://doi.org/10.1016/j.wasman.2015.10.011
- Wang, Z.Y., Liu, G., Zheng, H., Li, F., Ngo, H. H., Guo, W., Liu, C., Chen, L., and Xing B. (2015). Investigating the mechanisms of biochar’s removal of lead from solution. Bioresource Technology, 177, 308–317. https://doi.org/10.1016/j.biortech.11.077.
- Wnetrzak, R., Leahy, J.J., Chojnacka, K.W. Saeid, A. Novotny, E. Jensen, L. S. and Kwapinski, W. (2014). Influence of pig manure biochar mineral content on Cr (III) sorption capacity. Journal of Chemical Technology and Biotechnology, 89(4), 569–578.
https://doi.org/10.1002/jctb.4159. - Yadav, A., & Garg, V. K. (2011). Recycling of organic wastes by employing Eisenia fetida. Bioresource Technology, 102, 2874–2880.
https://doi.org/10.1016/j.biortech.2010.10.083 - Zaller, J. G., & Kopke, U. (2004). Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biology & Fertility of Soils, 40, 222–229.
https://doi.org/10.1007/s00374-004-0772-0 - Zhang, W., Du, W., Wang, F., Xu, H., Zhao, T., Zhang, H., & Zhu, W. (2020). Comparative study on Pb2+ removal from aqueous solutions using biochars derived from cow manure and its vermicompost. Science of The Total Environment, 716, 137108. https://doi.org/10.1016/j.scitotenv.2020.137108
How to Cite
Shruti Karmakar, Rakesh Acharya, Debnarayan Roy and Koushik Sen (2024). Sustainable Management of Organic Wastes to Enhance Soil Health via Vermicomposting © International Academic Publishing House (IAPH), Dr. Nithar Ranjan Madhu, Dr. Tanmay Sanyal, Dr. Koushik Sen, Professor Biswajit (Bob) Ganguly and Professor Roger I.C. Hansell (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 3], pp. 1-19. ISBN: 978-81-969828-3-6
DOI: https://doi.org/10.52756/boesd.2024.e03.001
SHARE WITH EVERYONE