The Genetics of Alzheimer’s Disease and the role of non-long coding RNAs in disease pathogenesis

Sreekanya Roy1,2
1Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, India.
2BIF Centre, University of Kalyani, Kalyani, Nadia, West Bengal, India
OrchideID Icon https://orcid.org/0009-0009-2944-3976

Sima Biswas1
1Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, India.

Dipanjan Guha2
2BIF Centre, University of Kalyani, Kalyani, Nadia, West Bengal, India.

Rakhi Dasgupta1
1Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, India.

Angshuman Bagchi1,2
1Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, India
2BIF Centre, University of Kalyani, Kalyani, Nadia, West Bengal, India

Published online: 27th May, 2024

DOI: https://doi.org/10.52756/bhstiid.2024.e01.001

Keywords: Alzheimer’s disease, Amyloid plaque hypothesis, Tau pathology hypothesis, genes involved, non-coding RNAs.

Abstract:

The advancements in medical research and public health have led to a recent relative increase in the global population of elderly persons that is leading to an increase in age-related, non-communicable neurological diseases. Neurodegenerative diseases cause progressive loss of neuron function that tends to the rapid death of neurons. One such neurodegenerative condition is Alzheimer’s disease (AD), which is a result of accumulation of misfolded proteins. AD is distinguished into two forms Sporadic Alzheimer’s Disease (sAD) and Familial Alzheimer’s Disease (fAD). sAD is marked by late onset of the disease, whereas, fAD is characterized as the early onset with Mendellian inheritance. A number of hypotheses were proposed to explain the disease. The widely accepted ones are: Amyloid plaque Hypothesis and Tau pathology Hypothesis. Amyloid plaque hypothesis states that amyloid β (Aβ) peptide accumulates and deposits in the brain, either as oligomers or fibrils, and thus regarded as the main cause of Alzheimer’s disease (AD); whereas Tau pathology hypothesis states that the main factor causing neurodegeneration in AD is tau phosphorylation and aggregation. The most significant genes include APP, APOE, PSEN1, PSEN2, etc. The clinical hallmarks are amyloid plaques and neurofibrilary tangles (NFTs). In the recent decade scientists have also seen significant relation between non-coding RNAs and Alzheimer’s disease (AD).

References:

  • Akhter, R. (2018). Circular RNA and Alzheimer’s disease. Circular RNAs: Biogenesis and Functions, 239-243.
  • Armstrong, R. A. (2019). Risk factors for Alzheimer’s disease. Folia neuropathologica57(2), 87-105.
  • Arnsten, A. F., Datta, D., Del Tredici, K., & Braak, H. (2021). Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimer’s & Dementia17(1), 115-124.
  • Barber, R. C. (2012). The genetics of Alzheimer’s disease. Scientifica2012.
  • Bertram, L., & Tanzi, R. E. (2009). Genome-wide association studies in Alzheimer’s disease. Human molecular genetics18(R2), R137-R145.
  • Bertram, L., & Tanzi, R. E. (2012). The genetics of Alzheimer’s disease. Progress in Molecular biology and Translational Science107, 79-100.
  • Biswas, G., Madhu, N.R., Sarkar, B., Paul, S., Erfani, H., Alam, Q. (2024). Rare Genetic Disorders: Unraveling the Pathophysiology, Gene Mutations, and Therapeutic Advances in Fabry Disease and Marfan Syndrome. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. pp. 199-219. https://doi.org/10.1007/978-981-99-9323-9_7
  • Chouraki, V., & Seshadri, S. (2014). Genetics of Alzheimer’s disease. Advances in genetics87, 245-294.
  • Chow, V. W., Mattson, M. P., Wong, P. C., & Gleichmann, M. (2010). An overview of APP processing enzymes and products. Neuromolecular medicine12, 1-12.
  • Cline, E. N., Bicca, M. A., Viola, K. L., & Klein, W. L. (2018). The amyloid-β oligomer hypothesis: beginning of the third decade. Journal of Alzheimer’s Disease64(s1), S567-S610.
  • De Strooper, B. (2007). Loss‐of‐function presenilin mutations in Alzheimer disease: Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO reports8(2), 141-146.
  • Delaby, C., Hirtz, C., & Lehmann, S. (2023). Overview of the blood biomarkers in Alzheimer’s disease: promises and challenges. Revue Neurologique179(3), 161-172.
  • Garbuz, D. G., Zatsepina, O. G., & Evgen’ev, M. B. (2021). Beta amyloid, tau protein, and neuroinflammation: an attempt to integrate different hypotheses of Alzheimer’s disease pathogenesis. Molecular Biology55, 670-682.
  • Ghahremani, M., Smith, E. E., Chen, H. Y., Creese, B., Goodarzi, Z., & Ismail, Z. (2023). Vitamin D supplementation and incident dementia: Effects of sex, APOE, and baseline cognitive status. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring15(1), e12404.
  • Giau, V. V., Bagyinszky, E., Yang, Y. S., Youn, Y. C., An, S. S. A., & Kim, S. Y. (2019). Genetic analyses of early-onset Alzheimer’s disease using next generation sequencing. Scientific reports9(1), 8368.
  • Goedert, M., Crowther, R. A., Scheres, S. H., & Spillantini, M. G. (2024). Tau and neurodegeneration. Cytoskeleton81(1), 95-102.
  • Haloi, R., Chanda, D., Hazarika, J., & Barman, A. (2023). Statistical feature-based EEG signals classification using ANN and SVM classifiers for Parkinson’s disease detection. Int. J. Exp. Res. Rev., 31(Spl Volume), 141-149. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.014
  • Hippius, H., & Neundörfer, G. (2003). The discovery of Alzheimer’s disease. Dialogues in clinical neuroscience5(1), 101-108.
  • Johnson, I. P. (2015). Age-related neurodegenerative disease research needs aging models. Frontiers in aging neuroscience7, 168.
  • Julia, T. C. W., & Goate, A. M. (2017). Genetics of β-amyloid precursor protein in Alzheimer’s disease. Cold Spring Harbor perspectives in medicine7(6), a024539.
  • Kelleher III, R. J., & Shen, J. (2017). Presenilin-1 mutations and Alzheimer’s disease. Proceedings of the National Academy of Sciences114(4), 629-631.
  • Kim, J., Basak, J. M., & Holtzman, D. M. (2009). The role of apolipoprotein E in Alzheimer’s disease. Neuron63(3), 287-303.
  • Kwak, Y. D., Marutle, A., Dantuma, E., Merchant, S., Bushnev, S., & Sugaya, K. (2011). Involvement of notch signaling pathway in amyloid precursor protein induced glial differentiation. European journal of pharmacology650(1), 18-27.
  • Lan, Z., Chen, Y., Jin, J., Xu, Y., & Zhu, X. (2022). Long non-coding RNA: insight into mechanisms of Alzheimer’s disease. Frontiers in Molecular Neuroscience14, 821002.
  • Lanoiselée, H. M., Nicolas, G., Wallon, D., Rovelet-Lecrux, A., Lacour, M., Rousseau, S., … & collaborators of the CNR-MAJ project. (2017). APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS medicine14(3), e1002270.
  • Li, D., Zhang, J., Li, X., Chen, Y., Yu, F., & Liu, Q. (2021). Insights into lncRNAs in Alzheimer’s disease mechanisms. RNA biology18(7), 1037-1047.
  • Liu, X., Liu, Y., & Ji, S. (2021). Secretases related to amyloid precursor protein processing. Membranes11(12), 983.
  • Maccioni, R. B., Farías, G., Morales, I., & Navarrete, L. (2010). The revitalized tau hypothesis on Alzheimer’s disease. Archives of medical research41(3), 226-231.
  • Madhu, N.R., Biswas, G., Paul, S., Adhikari, S., Sarkar, B., Rafeeq, M.M., & Umair, M. (2024). Challenges and Future Opportunities in Rare Genetic Disorders: A Comprehensive Review. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. pp.  251-275. https://doi.org/10.1007/978-981-99-9323-9_9
  • Nygaard, H. B., van Dyck, C. H., & Strittmatter, S. M. (2014). Fyn kinase inhibition as a novel therapy for Alzheimer’s disease. Alzheimer’s research & therapy6, 1-8.
  • O’brien, R. J., & Wong, P. C. (2011). Amyloid precursor protein processing and Alzheimer’s disease. Annual review of neuroscience34, 185-204.
  • Paroni, G., Bisceglia, P., & Seripa, D. (2019). Understanding the amyloid hypothesis in Alzheimer’s disease. Journal of Alzheimer’s Disease68(2), 493-510.
  • Patrick, E., Rajagopal, S., Wong, H. K. A., McCabe, C., Xu, J., Tang, A., … & De Jager, P. L. (2020). The role of non-coding RNAs in Alzheimer’s disease.
  • Shin, J., Lee, S. Y., Kim, S. H., Kim, Y. B., & Cho, S. J. (2008). Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer’s disease. Neuroimage43(2), 236-244.
  • Vélez, J. I., Lopera, F., Silva, C. T., Villegas, A., Espinosa, L. G., Vidal, O. M., … & Arcos-Burgos, M. (2020). Familial Alzheimer’s disease and recessive modifiers. Molecular Neurobiology57(2), 1035-1043.
  • Walsh, D. M., &Selkoe, D. J. (2007). Aβ oligomers–a decade of discovery. Journal of neurochemistry, 101(5), 1172-1184.. Wang, M., Qin, L., & Tang, B. (2019). MicroRNAs in Alzheimer’s disease. Frontiers in genetics10, 434919.

check for update

A Basic Handbook of Science, Technology and Innovation for Inclusive Development
[Volume: 1]

How to Cite
Sreekanya Roy, Sima Biswas,Dipanjan Guha, Rakhi Dasgupta, Angshuman Bagchi (2024). The Genetics of Alzheimer’s Disease and the role of non-long coding RNAs in disease pathogenesis. © International Academic Publishing House (IAPH), Dr. Suman Adhikari, Dr. Manik Bhattacharya and Dr. Ankan Sinha, A Basic Handbook of Science, Technology and Innovation for Inclusive Development [Volume: 1], pp. 01-12. ISBN: 978-81-969828-4-3.
DOI: https://doi.org/10.52756/bhstiid.2024.e01.001

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device

Our Other Books –