Green Leaf Volatiles: A Crucial Mediator of Plant
Chiranjit Mukherjee
Department of Botany, Chandernagore College, Chandernagore-712136, West Bengal, India
https://orcid.org/0009-0008-8034-7667
Published online:30 June, 2024
DOI: https://doi.org/10.52756/lbsopf.2024.e02.011
Keywords: Green Leaf Volatiles (GLVs), Volatile Organic Compounds (VOCs), Plant Defense
Abstract:
Plants have evolved different defense strategies to counter biotic and abiotic threats coming from their surroundings. The role of different emitted volatile organic compounds (VOCs) in plant defense has been the field of active research in the last decades. Green leaf volatiles (GLVs), emitted from the vegetative parts of the plant body have appeared as the utmost crucial mediator in defense and plant-to-plant communications. GLVs are formed through the oxidation of polyunsaturated fatty acids (PUFAs) by the action of lipoxygenase (LOX) enzyme. The plasma membrane has been the source of all PUFAs in GLV biosynthesis. The enzyme hydroperoxide lyase (HPL), performs a crucial role in GLV formations by producing different volatile aldehydes. Upon herbivory, plants are found to release more amount of GLVs which can able to elicit the expression of different defense-related genes, and thus indirect defense against the herbivory can be achieved. Emitted GLVs can induce the defense mechanism in neighbouring plants by priming method. GLVs also showed antagonistic effects on invading phytopathogens, especially against the invading fungi. Despite its tremendous potential as a defense mediator the molecular mechanisms of GLV uptake and perception in plants have not been well understood.
References:
- Ameye, M., Allmann, S., Verwaeren, J., Smagghe, G., Haesaert, G., Schuurink, R. C., & Audenaert, K. (2018). Green leaf volatile production by plants: a meta‐analysis. New Phytol., 220(3), 666-683. https://doi.org/10.1111/nph.14671
- Baldwin, I. T., Halitschke, R., Paschold, A., Von Dahl, C. C., & Preston, C. A. (2006). Volatile signaling in plant-plant interactions:” talking trees” in the genomics era. Science, 311(5762), 812-815. https://doi.org/10.1126/science.1118446
- Bannenberg, G., Martínez, M., Hamberg, M., & Castresana, C. (2009). Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids, 44, 85-95.
- Blümke, A., Falter, C., Herrfurth, C., Sode, B., Bode, R., Schäfer, W., Feussner, I., & Voigt, C. A. (2014). Secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat head infection. Plant Physiol., 165(1), 346-358.
- Davoine, C., Falletti, O., Douki, T., Iacazio, G., Ennar, N., Montillet, J. L., & Triantaphylidès, C. (2006). Adducts of oxylipin electrophiles to glutathione reflect a 13 specificity of the downstream lipoxygenase pathway in the tobacco hypersensitive response. Plant Physiol., 140(4), 1484-1493. https://doi.org/10.1104/pp.105.074690
- Dudareva, N., Negre, F., Nagegowda, D. A., & Orlova, I. (2006). Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci., 25(5), 417-440.
- Engelberth, J., Contreras, C. F., Dalvi, C., Li, T., & Engelberth, M. (2013). Early transcriptome analyses of Z-3-hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles. PLoS One, 8(10), e77465.
- Engelberth, J., Seidl-Adams, I., Schultz, J. C., & Tumlinson, J. H. (2007). Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays. Mol. Plant-Microbe Interact., 20(6), 707-716. https://doi.org/10.1094/MPMI-20-6-0707
- Gaquerel, E., Weinhold, A., & Baldwin, I. T. (2009). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphigidae) and its natural host Nicotiana attenuata. VIII. An unbiased GCxGC-ToFMS analysis of the plant’s elicited volatile emissions. Plant Physiol., 149(3), 1408-1423. https://doi.org/10.1104/pp.108.130799
- Heil, M. (2014). Herbivore‐induced plant volatiles: targets, perception and unanswered questions. New Phytol., 204, 297-306. https://doi.org/10.1111/nph.12977
- Heil, M., & Kost, C. (2006). Priming of indirect defences. Ecol. Lett., 9(7), 813-817.
- Kishimoto, K., Matsui, K., Ozawa, R., & Takabayashi, J. (2008). Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Phytochemistry, 69(11), 2127-2132. https://doi.org/10.1016/j.phytochem.2008.04.023 Matsui, K. (2016). A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds. Curr. Opin. Plant Biol., 32, 24-30.
- Mirabella, R., Rauwerda, H., Allmann, S., Scala, A., Spyropoulou, E. A., de Vries, M., Boersma, M. R., Breit, T. M., Haring, M. A., & Schuurink, R. C. (2015). WRKY 40 and WRKY 6 act downstream of the green leaf volatile E‐2‐hexenal in Arabidopsis. Plant J., 83(6), 1082-1096. https://doi.org/10.1111/tpj.12953
- Porta, H., Figueroa-Balderas, R. E., & Rocha-Sosa, M. (2008). Wounding and pathogen infection induce a chloroplast-targeted lipoxygenase in the common bean (Phaseolus vulgaris L.). Planta, 227, 363-373. https://doi.org/10.1007/s00425-007-0623-y
- Prost, I., Dhondt, S., Rothe, G., Vicente, J., Rodriguez, M. J., Kift, N., Carbonne, F., Griffiths, G.,.. & Fournier, J. (2005). Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol., 139(4), 1902-1913. https://doi.org/10.1104/pp.105.066274
- Qi, J., Zhou, G., Yang, L., Erb, M., Lu, Y., Sun, X., Cheng, J., & Lou, Y. (2011). The chloroplast-localized phospholipases D α4 and α5 regulate herbivore-induced direct and indirect defenses in rice. Plant Physiol., 157(4), 1987-1999. https://doi.org/10.1104/pp.111.183749
- Schaller, G. E., & Bleecker, A. B. (1995). Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science, 270(5243), 1809-1811.
- Sugimoto, K., Matsui, K., Iijima, Y., Akakabe, Y., Muramoto, S., Ozawa, R., … & Takabayashi, J. (2014). Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc. Natl. Acad. Sci. U.S.A., 111(19), 7144-7149. https://doi.org/10.1073/pnas.1320660111
- Ton, J., D’Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch Mani, B., & Turlings, T. C. J. (2007). Priming by airborne signals boosts direct and indirect resistance in maize. Plant J., 49(1), 16-26. https://doi.org/10.1111/j.1365-313X.2006.02935.x
- ul Hassan, M. N., Zainal, Z., & Ismail, I. (2015). Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol. J., 13(6), 727-739.
- Wang, L., & Erb, M. (2022). Volatile uptake, transport, perception, and signaling shape a plant’s nose. Essays Biochem., 66(5), 695-702. https://doi.org/10.1042/EBC20210092
- Xin, Z., Zhang, L., Zhang, Z., Chen, Z., & Sun, X. (2014). A tea hydroperoxide lyase gene, CsiHPL1, regulates tomato defense response against Prodenia Litura (Fabricius) and Alternaria Alternata f.sp. Lycopersici by modulating green leaf volatiles (GLVs) release and jasmonic acid (JA)gene expression. Plant Mol. Biol. Rep., 32, 62-69.
- Yan, Z. G., & Wang, C. Z. (2006). Similar attractiveness of maize volatiles induced by Helicoverpa armigera and Pseudaletia separata to the generalist parasitoid Campoletis chlorideae. Entomol. Exp. Appl. 118(2), 87-96. https://doi.org/10.1111/j.1570-7458.2006.00368.x
- Yi, H. S., Heil, M., Adame-Alvarez, R. M., Ballhorn, D. J., & Ryu, C. M. (2009). Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol., 151(4), 2152-2161. https://doi.org/10.1104/pp.109.144782
- Zebelo, S. A., Matsui, K., Ozawa, R., & Maffei, M. E. (2012). Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Sci., 196, 93-100.
How to Cite
Chiranjit Mukherjee (2024). Green Leaf Volatiles: A Crucial Mediator of Plant. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Latoya Appleton, Dr. Jayanta Kumar Das, Madhumita Das (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 2, pp. 131-137. ISBN: 978-81-969828-6-7 DOI: https://doi.org/10.52756/lbsopf.2024.e02.011
SHARE WITH EVERYONE