Phytoremediation of indoor air pollution using indoor plants

Sujata Roy Moulik
Assistant Professor, Department of Zoology, Chandernagore College, Chandernagore, Hooghly, West Bengal, India.

Published online: 15th December, 2023

DOI: https://doi.org/10.52756/bhietm.2023.e02.013

Keywords: Air pollution, Indoor pollution, Phytoremediation, medicinal plants.

Abstract:

Pollution is everywhere, within our homes. This has been a major concern as indoor air pollution is present globally, especially in developed countries and cities. There are different indoor air pollutants like CO, volatile organic compounds (VOCs) like formaldehyde, benzene, nitrous oxide, trichloro-ethylene, fluorine, ammonia, radon, aldehyde, hydrocarbons etc. These pollutants have serious hazardous effects on human health. Indoor plants have been used worldwide for decoration since ancient times. But this beautification may add some beneficial aspects to control of indoor pollution through a process called as Phytoremediation. Experiments are going on to evaluate the actual contribution of these ornamental plants in indoor air pollution control. This could be a sustainable approach towards the maintenance of indoor air quality.

References:

  • Abbass, O.A.; Sailor, D.J.; Gall, E.T. Effectiveness of indoor plants for passive removal of indoor ozone. Build. Environ. 2017, 119, 62–70.
  • Aller, M. Environmental Laws and Regulations. In Library of Congress Cataloging; CRC Press LLC: Boca Raton, FL, USA, 1999.
  • Anonymous, 2016. 3 Helpful Plants to Purify the Air in Your Home. https://i sha.sadhguru.org/uk/en/wisdom/article/
  • ATSDR. Trichloroethylene (TCE); ATSDR: Atlanta, GA, USA, 2011.
  • Aydogan, A., & Montoya, L. D. (2011). Formaldehyde removal by common indoor plant species and various growing media. Atmospheric Environment, 45(16), 2675–2682. https://doi.org/10.1016/j. atmosenv.2011.02.062Zhou et al., 2011
  • Bahr, D.E.; Aldrich, T.E.; Seidu, D.; Brion, G.M.; Tollerud, D.J.; Muldoon, S.; Reinhart, N.; Youseefagha, A.; McKinney, P.; Hughes, T.; et al. Occupational exposure to trichloroethylene and cancer risk for workers at the Paducah Gaseous Diffusion Plant. Int. J. Occup. Med. Environ. Health 2011, 24, 67–77.
  • Bandehali, S., Miri, T., Onyeaka, H. and Kumar, P. 2021. Current State of Indoor Air Phytoremediation Using Potted Plants and Green Walls. Atmosphere., 12: 473-497.
  • Banerjee, J., Biswas, S., Madhu, N.R., Karmakar, S. R. and Biswas. S. J. (2014). A better understanding of pharmacological activities and uses of phytochemicals of Lycopodium clavatum: A review. Journal of Pharmacognosy and Phytochemistry. 3(1), 207-210.
  • Bringel, F. and Couee, I. 2015. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front. Microbiol., 6:486.
  • Bruce, N.; Perez-Padilla, R.; Albalak, R. Indoor air pollution in developing countries: A major environmental and public health challenge. Bull. World Health Organ. 2000, 78, 1078–1092.
  • Buczy ´nska, A.J.; Krata, A.; Van Grieken, R.; Brown, A.; Polezer, G.; De Wael, K.; Potgieter-Vermaak, S. Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly. Sci. Total Environ. 2014, 490, 134–143.
  • Chaney, R.; Malik, M.; Li, Y.M.; Brown, S.L.; Brewer, E.P.; Angle, J.S.; Baker, A.J. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 1997, 8, 279–284.
  • Darling, E.; Morrison, G.C.; Corsi, R.L. Passive removal materials for indoor ozone control. Build. Environ. 2016, 106, 33–44.
  • Das, S., Dey, S., &Samadder, A. (2016). Dumdum airport: A necessity and luxury for human lifestyle but amenace for avian diversity. Int. J. Exp. Res. Rev., 8, 29-38. Retrieved from https://qtanalytics.in/journals/index.php/IJERR/article/view/1309
  • De Gennaro, G.; Dambruoso, P.R.; Loiotile, A.D.; Di Gilio, A.; Giungato, P.; Tutino, M.; Marzocca, A.; Mazzone, A.; Palmisani, J.; Porcelli, F. Indoor air quality in schools. Environ. Chem. Lett. 2014, 12, 467–482.
  • De Kempeneer, L., Sercu, B., Vanbrabant, W., Van Langenhove, H. and Verstraete, W. 2004. Bioaugmentation of the phyllosphere for the removal of toluene from indoor air. Appl. Microbiol. Biotechnol., 64: 284-288
  • Destaillats, H.; Maddalena, R.L.; Singer, B.C.; Hodgson, A.T.; McKone, T.E. Indoor pollutants emitted by office equipment: A review of reported data and information needs. Environ. Energy Technol. Div. 2007, 42, 1371–1388.
  • Ensley, B. Rationale for use of phytoremediation. In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment; Raskin, I., Ensley, B.D., Eds.; John Wiley & Sons: New York, NY, USA, 2000; pp. 3–11.
  • Environmental Health and Medicine Education. Tetrachloroethylene Toxicity, What Are the Physiological Effects of Tetrachloroethylene Exposure? In Agency for Toxic Substances and Disease Registry; ATSDR: Atlanta, GA, USA, 2008.
  • Ezzati, M. Indoor Air Pollution/Developing Countries; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 547–553.
  • Fadeyi, M.O. Ozone in indoor environments: Research progress in the past 15 years. Sustain. Cities Soc. 2015, 18, 78–94.
  • Gawro ´nska, H.; Bakera, B. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual. Atmos. Health 2014, 8, 265–272.
  • Gawronska, H. and Bakera, B. 2015. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual. Atmos. Health., 8: 265-272.
  • Ghosh, S., Nahar, N., Dasgupta, D., Sarkar, B., Biswas, P., Chakraborty, R., Acharya, C.K., Jana, S.K., Madhu, N.R. (2022). Socioeconomic Disparity in Health of Rural Communities in the Himalayan Foothills: Mahananda Wildlife Sanctuary, West Bengal. Chettinad Health City Medical Journal.  11(2), 9-18. https://doi.org/10.24321/2278.2044.202215
  • Gong, Y., Zhou, T., Wang, P., Lin, Y., Zheng, R., Zhao, Y., & Xu, B. (2019). Fundamentals of ornamental plants in removing benzene in indoorair. Atmosphere, 10(4), 221. https://doi.org/10.3390/atmos10040221
  • Heal, M.R.; Kumar, P.; Harrison, R.M. Particles, air quality, policy and health. Chem. Soc. Rev. 2012, 41, 6606–6630.
  • Irga, P. J., Torpy, F. R. and Burchett, M. D. 2013. Can hydroculture be used to enhance the performance of indoor plants for removal of air pollutants? Atmos. Environ., 77: 267-271.
  • Irga, P.; Paull, N.; Abdo, P.; Torpy, F. An assessment of the atmospheric particle removal efficiency of an in-room botanical biofilter system. Build. Environ. 2017, 115, 281–290.
  • Jenkins, P.L.; Phillips, T.J.; Mulberg, E.J.; Hui, S.P. Activity patterns of Californians: Use of and proximity to indoor pollutant sources. Atmos. Environ. Part A Gen. Top. 1992, 26, 2141–2148.
  • Kaur, A.; Misra, A. Impact of Indoor Surface Materials and Environment on Perceived Air Quality. J. Environ. Hum. 2014, 2014, 25–35.
  • Kim, K. J., Kim, H. J., Khalekuzzaman, M., Yoo, E. H., Jung, H. H., & Jang, H. S. (2016). Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants. Environmental Science and Pollution Research, 23(7), 6149–6158. https://doi.org/10.1007/s11356-016-6065-y
  • Kim, K.J.; Kim, H.J.; Khalekuzzaman, M.; Yoo, E.H.; Jung, H.H.; Jang, H.S. Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants. Environ. Sci. Pollut. Res. 2016, 23, 6149–6158.
  • Kim, Kwang Jin, Yoo, E. H., Jeong, M. I., Song, J. S., Lee, S. Y., & Kays, S. J. (2011). Changes in the phytoremediation potential of indoor plants with exposure to toluene. HortScience, 46(12), 1646–1649. https:// doi.org/10.21273/hortsci.46.12.1646
  • Kwang, J. K., Mi, J. K., Jeong, S. S., Eun, H. Y., Son, K. C., & Kays, S. J. (2008). Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. Journal of the American Society for Horticultural Science, 133(4), 521–526. https:// doi.org/10.21273/jashs.133.4.521
  • Li, S., Tosens, T., Harley, P. C., Jiang, Y. ,Kanagendran, A., Grosberg, M., Jaamets, K. and Niinemets, U. 2018. Glandular trichomes as a barrier against atmospheric oxidative stress: relationships with ozone uptake, leaf damage, and emission of LOX products across a diverse set of species. Plant Cell Environ., 41(6): 1263-1277.
  • Loupa, G.; Polyzou, C.; Zarogianni, A.M.; Ouzounis, K.; Rapsomanikis, S. Indoor and outdoor elemental mercury: A comparison of three different cases. Environ. Monit. Assess. 2017, 189.
  • Maiti, A., Madhu, N.R., &Manna, C. K. (2010). Ethnomedicine used by the tribal people of the district Purulia, W. B., India in controlling fertility : and experimental study. Pharmacologyonline. 1, 783-802.
  • Maiti, A., Madhu, N.R., &Manna, C. K. (2013). Natural products traditionally used by the tribal people of the Purulia district, West Bengal, India for the abortifacient purpose. International Journal of Genuine Medicine, 3(2), e14:1-4.
  • Mangkoedihardjo, S., &Samudro, G. (2014). Research strategy on kenaf for phytoremediation of organic matter and metals polluted soil. Advances in Environmental Biology, 8(17), 64–67.
  • Mendez, M.O.; Maier, R.M. Phytoremediation of mine tailings in temperate and arid environments. Rev. Environ. Sci. Bio/Technol. 2007, 7, 47–59.
  • Mentese, S.; Mirici, N.A.; Otkun, M.T.; Bakar, C.; Palaz, E.; Tasdibi, D.; Cevizci, S.; Cotuker, O. Association between respiratory health and indoor air pollution exposure in Canakkale, Turkey. Build. Environ. 2015, 93, 72–83.
  • Ni, J., Leung, A. K., & Ng, C. W. W. (2019). Unsaturated hydraulic properties of vegetated soil under single and mixed planting conditions. Geotechnique, 69(6), 554–559. https://doi.org/10.1680/jgeot.17.T.044
  • Nielsen, G.D.; Larsen, S.T.; Wolkoff, P. Recent trend in risk assessment of formaldehyde exposures from indoor air. Arch. Toxicol. 2012, 87, 73–98.
  • Nielsen, G.D.; Larsen, S.T.; Wolkoff, P. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch. Toxicol. 2016, 91, 35–61.
  • Oh, G.; Jung, G.J.; Seo, M.H.; Im, Y.B. Experimental study on variations of CO2 concentration in the presence of in door plants and respiration of experimental animals. Environ. Biotechnol. 2011, 52, 321–329.
  • Oikawa, P. Y. and Lerdau, T. M. 2013. Catabolism of volatile organic compounds influences plant survival. Trends Plant Sci., 18: 695-703.
  • Othman, M.; Latif, M.T.; Mohamed, A.F. The PM10 compositions, sources and health risks assessment in mechanically ventilated office buildings in an urban environment. Air Qual. Atmos. Health 2015, 9, 597–612.
  • Pennisi, S.V.; van Iersel, M.W. Quantification of carbon assimilation of plants in simulated and in situ interiorscapes. Hort Science 2012, 47, 468–476.
  • Prasad, M.N.V.; Freitas, H.M.D.O. Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol. 2003, 6, 285–321.
  • Prasad, N., Bhattacharya, T., & Lal, B. (2023). Chemometric Techniques in the Assessment of Ambient Air Quality and Development of Air Quality Index of Coal Mining Complex: A Statistical Approach. Int. J. Exp. Res. Rev., 36, 433-446. https://doi.org/10.52756/ijerr.2023.v36.018a
  • Ren, Y., Ge, Y., Ma, D., Song, X., Shi, Y., Pan, K., Qu, Z., Guo, P., Han, W., & Chang, J. (2017). Enhancing plant diversity and mitigating BVOC emissions of urban green spaces through the introduction of ornamental tree species. Urban Forestry and Urban Greening, 27, 305–313. https://doi.org/10.1016/j.ufug.2017.08.011
  • Samudro, G., & Mangkoedihardjo, S. (2020). Mixed plant operations for phytoremediation in polluted environments – A critical review. Journal of Phytology, 12, 99–103. https://doi.org/10.25081/jp.2020.v12.6454
  • Samudro, H., & Mangkoedihardjo, S. (2020). Greening the environment in living a new lifestyle in the COVID-19 era. Eurasian Journal of Biosciences, 14(2), 3285–3290.
  • Sandhu, A., Halverson, L. and Beattie, G. A. 2007. Bacterial degradation of air borne phenol in the phyllosphere. Environ. Microbiol. 9: 383-392.
  • Schnoor, J.; Light, L.A.; McCutcheon, S.C.; Wolfe, N.L.; Carreia, L.H. Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 1995, 29, 318A–323A.
  • Schwela, D. Pollution, Indoor Air A2—Wexler, Philip. In Encyclopedia of Toxicology, 3rd ed.; Oxford University Press: Oxford, UK, 2014; pp. 1003–1017.
  • Schwela, P.D. Indoor Air; Kotzias, D., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2005; Volume 3, pp. 475–489.
  • Shen, H.; Tsai, C.M.; Yuan, C.S.; Jen, Y.H.; Ie, I.R. How incense and joss paper burning during the worship activities influences ambient mercury concentrations in indoor and outdoor environments of an Asian temple. Chemosphere 2017, 167, 530–540.
  • Smith, K.R. Biofuels, Air Pollution, and Health: A Global Review; Plenum Press: New York, NY, USA, 1987.
  • Smith, K.R.; Mehta, S.; Maeusezahl-Feuz, M. Indoor air pollution from household solid fuel use. In Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors; Ezzati, M., Ed.; World Health Organization: Geneva, Switzerland, 2004; pp. 1435–1493.
  • Sriprapat, W.; Suksabye, P.; Areephak, S.; Klantup, P.; Waraha, A.; Sawattan, A.; Thiravetyan, P. Uptake of toluene and ethylbenzene by plants: Removal of volatile indoor air contaminants. Ecotoxicol. Environ. Saf. 2014, 102, 147–151.
  • Sriprapat, W.; Thiravetyan, P. Efficacy of ornamental plants for benzene removal from contaminated air and water: Effect of plant associated bacteria. Int. Biodeterior. Biodegrad. 2016, 113, 262–268.
  • Tani, A., Tobe, S. and Shimizu, S. 2009. Uptake of methacrolein and methyl vinyl ketone by tree saplings and implications for forest atmosphere. Environ. Sci.Technol., 44: 7096-7101.
  • Tarran, J.; Torpy, F.; Burchett, M. Use of living pot-plants to cleanse indoor air—Research review. In Proceedings of the 6th International Conferece on Indoor Air Quality, Ventilation & Energy Conservation, Sustainable Built Environment, Sendai, Japan, 28–31 October 2007; pp. 249–256.
  • Teiri, H., Pourzamzni, H., & Hajizadeh, Y. (2018b). Phytoremediation of formaldehyde from indoor environment by ornamental plants: An approach to promote occupants health. International Journal of Preventive Medicine, 9(1), 70. https://doi.org/10.4103/ijpvm. IJPVM_269_16
  • Teiri, H.; Pourzamani, H.; Hajizadeh, Y. Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment. Chemosphere 2018, 197, 375–381.
  • Ugranli, T.; Gungormus, E.; Sofuoglu, A.; Sofuoglu, S. Indoor Air Quality in Chemical Laboratories. In Elsevier Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; pp. 859–878.
  • Van Aken, B., Yoon, J. M. and Schnoor, J. L. 2004. Biodegradation of nitrosubstituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro1,3,5-triazine, and octahydro-1,3,5,7-tetranitro- 1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides nigra DN34). Appl. Environ. Microbiol., 70: 508-517.
  • Wang, Y.; Groot, F.B.; Wörtche, H. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Build. Environ. 2014, 77, 88–100.
  • Wang, Z.; Pei, J.; Zhang, J.S. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification. Hazard. Mater. 2014, 280, 235–243.
  •  Wei, X., Lyu, S., Yu, Y., Wang, Z., Liu, H., Pan, D. and Chen, J. 2017. Phylloremediation of air pollutants: Exploiting the potential of plant leaves and leaf-associated microbes. Front. Plant Sci., 8:1318.
  • Wolverton, B.C.; Johnson, A.; Bounds, K. Interior Landscape Plants for Indoor Air Pollution Abatement; NASA Stennis Space Centre: Hancock, MS, USA, 1989.
  • Wood, R.A.; Burchett, M.D.; Alquezar, R.; Orwell, R.L.; Tarran, J.; Torpy, F. The Potted-Plant Microcosm Substantially Reduces Indoor Air VOC Pollution: I. Office Field-Study. Water Air Soil Pollut. 2006, 175, 163–180. Yang, D. S., Pennisi, S. V., Son, K. C., & Kays, S. J. (2009). Screening indoor plants for volatile organic pollutant removal efficiency. Hort Science, 44(5), 1377–1381. https://doi.org/10.21273/hortsci.44.5.1377

check for update

The Basic Handbook of Indian Ethnobotany
and Traditional Medicine
Vol. 2

How to Cite
Sujata Roy Moulik (2023). Phytoremediation of indoor air pollution using indoor plants. © International Academic Publishing House (IAPH), Mrs. Bhanumati Sarkar, Dr. (Professor) Surjyo Jyoti Biswas, Dr. Alok Chandra Samal&Dr. Akhil Pandey(eds.), The Basic Handbook of Indian Ethnobotany and Traditional Medicine[Volume: 2],pp. 158-171. ISBN: 978-81-962683-5-0.
DOI: https://doi.org/10.52756/bhietm.2023.e02.013

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device

Our Other Books –