Role of Artificial Intelligence in Biological Research: A Short Review

Kaushik Sarkar
Department of Physiology, Krishnagar Government College, Krishnagar, Nadia, West Bengal-741235
OrchideID Icon https://orcid.org/0009-0002-3746-0492

Published online:8 August, 2024

DOI: https://doi.org/10.52756/boesd.2024.e03.014

Keywords: Artificial Intelligence, Machine Learning, Biological Research, Disease Detection, Biomedical Imaging

Abstract:

Artificial Intelligence(AI) is simply machine learning (ML), a modern technology that handles various tasks that humans typically perform. This article aims to demonstrate the significance of AI in biological research science. Because of its ability to interpret data clearly, customize treatment strategies based on data representation, and optimize administrative processes, artificial intelligence (AI) has become increasingly important in the twenty-first century. However, some lacunae also exist due to their application in various fields, including biological research. However, this machine-learning technique enables the examination of various disease histories, the detection of diseases, etc. For research purposes, it also helps to make 3D structures of proteins, biomedical imaging, molecular formation, etc. By utilizing this AI technology, various nations improved their therapeutic techniques. As a result, the review article will help us to learn more about the application of AI technology in our educational system and research.

References:

  • Alam, S., Israr, J., & Kumar, A. (2024). Artificial intelligence and machine learning in bioinformatics. In V. Singh & A. Kumar (Eds.), Advances in Bioinformatics, pp. 321–345. Springer Nature. https://doi.org/10.1007/978-981-99-8401-5_16
  • Bhardwaj, A., Kishore, S., & Pandey, D. K. (2022). Artificial intelligence in biological sciences. Life, 12(9), 1430. https://doi.org/10.3390/life12091430
  • Blanco-González, A., Cabezón, A., Seco-González, A., Conde-Torres, D., Antelo-Riveiro, P., Piñeiro, Á., & Garcia-Fandino, R. (2023). The role of AI in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals, 16(6), 891.
    • https://doi.org/10.3390/ph16060891
  • Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C., & Collins, J. J. (2018). Next-generation machine learning for biological networks. Cell, 173(7), 1581–1592. https://doi.org/10.1016/j.cell.2018.05.015
  • Carreras-Puigvert, J., & Spjuth, O. (2024). Artificial intelligence for high content imaging in drug discovery. Current Opinion in Structural Biology, 87, 102842. https://doi.org/10.1016/j.sbi.2024.102842
  • Chen, R., Liu, X., Jin, S., Lin, J., & Liu, J. (2018). Machine learning for drug-target interaction prediction. Molecules, 23(9), 2208. https://doi.org/10.3390/molecules23092208
  • Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., Xie, W., Rosen, G. L., Lengerich, B. J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A. E., Shrikumar, A., Xu, J., … Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15(141), 20170387. https://doi.org/10.1098/rsif.2017.0387
  • Dawn, N., Ghosh, S., Saha, A., Chatterjee, S., Ghosh, T., Guha, S., Sarkar, S., Mukherjee, P., & Sanyal, T. (2022). A review on digital twins technology: A new frontier in agriculture. Artificial Intelligence and Applications. https://doi.org/10.47852/bonviewAIA3202919
  • Dawn, N., Ghosh, T., Ghosh, S., Saha, A., Mukherjee, P., Sarkar, S., Guha, S., & Sanyal, T. (2023). Implementation of artificial intelligence, machine learning, and internet of things (IoT) in revolutionizing agriculture: A review on recent trends and challenges. International Journal of Experimental Research and Review, 30, 190–218. https://doi.org/10.52756/ijerr.2023.v30.018
  • Dias, R., & Torkamani, A. (2019). Artificial intelligence in clinical and genomic diagnostics. Genome Medicine, 11(1), 70. https://doi.org/10.1186/s13073-019-0689-8
  • Ezziane, Z. (2006). Applications of artificial intelligence in bioinformatics: A review. Expert Systems with Applications, 30(1), 2–10. https://doi.org/10.1016/j.eswa.2005.09.042
  • Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., & Aspuru-Guzik, A. (2018). Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Science, 4(2), 268–276.
  • https://doi.org/10.1021/acscentsci.7b00572
  • Hansen, K., Biegler, F., Ramakrishnan, R., Pronobis, W., Von Lilienfeld, O. A., Müller, K.R., & Tkatchenko, A. (2015). Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. The Journal of Physical Chemistry Letters, 6(12), 2326–2331.
  • https://doi.org/10.1021/acs.jpclett.5b00831
  • Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245–258. https://doi.org/10.1016/j.neuron.2017.06.011
  • Hassoun, S., Jefferson, F., Shi, X., Stucky, B., Wang, J., & Rosa, E. (2022). Artificial intelligence for biology. Integrative and Comparative Biology, 61(6), 2267–2275. https://doi.org/10.1093/icb/icab188
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Karim, M. R., Islam, T., Shajalal, M., Beyan, O., Lange, C., Cochez, M., Rebholz-Schuhmann, D., & Decker, S. (2023). Explainable AI for bioinformatics: Methods, tools and applications. Briefings in Bioinformatics, 24(5), bbad236. https://doi.org/10.1093/bib/bbad236
  • Koulakov, A., Shuvaev, S., Lachi, D., & Zador, A. (2021). Encoding innate ability through a genomic bottleneck. https://doi.org/10.1101/2021.03.16.435261
  • Kudithipudi, D., Aguilar-Simon, M., Babb, J., Bazhenov, M., Blackiston, D., Bongard, J., Brna, A. P., Chakravarthi Raja, S., Cheney, N., Clune, J., Daram, A., Fusi, S., Helfer, P., Kay, L., Ketz, N., Kira, Z., Kolouri, S., Krichmar, J. L., Kriegman, S., … Siegelmann, H. (2022). Biological underpinnings for lifelong learning machines. Nature Machine Intelligence, 4(3), 196–210. https://doi.org/10.1038/s42256-022-00452-0
  • Lai, K., Twine, N., O’Brien, A., Guo, Y., & Bauer, D. (2019). Artificial intelligence and machine learning in bioinformatics. In Encyclopedia of Bioinformatics and Computational Biology (pp. 272–286). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20325-7
  • Li, X., Zhang, L., Yang, J., & Teng, F. (2024). Role of artificial intelligence in medical image analysis: A review of current trends and future directions. Journal of Medical and Biological Engineering, 44(2), 231–243. https://doi.org/10.1007/s40846-024-00863-x
  • Maqsood, K., Hagras, H., & Zabet, N. R. (2024). An overview of artificial intelligence in the field of genomics. Discover Artificial Intelligence, 4(1), 9. https://doi.org/10.1007/s44163-024-00103-w
  • Narayanan, A., Keedwell, E. C., & Olsson, B. (2002). Artificial intelligence techniques for bioinformatics. Applied Bioinformatics, 1(4), 191–222.
  • Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80–93. https://doi.org/10.1016/j.drudis.2020.10.010
  • Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., & Unterthiner, T. (2019). Interpretable deep learning in drug discovery. In W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, & K.-R. Müller (Eds.), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (Vol. 11700, pp. 331–345). Springer International Publishing. https://doi.org/10.1007/978-3-030-28954-6_18
  • Qureshi, R., Irfan, M., Gondal, T. M., Khan, S., Wu, J., Hadi, M. U., Heymach, J., Le, X., Yan, H., & Alam, T. (2023). AI in drug discovery and its clinical relevance. Heliyon, 9(7), e17575. https://doi.org/10.1016/j.heliyon.2023.e17575
  • Racovita, A., & Jaramillo, A. (2020). Reinforcement learning in synthetic gene circuits. Biochemical Society Transactions, 48(4), 1637–1643. https://doi.org/10.1042/BST20200008
  • Richards, B., Tsao, D., & Zador, A. (2022). The application of artificial intelligence to biology and neuroscience. Cell, 185(15), 2640–2643. https://doi.org/10.1016/j.cell.2022.06.047
  • Savage, N. (2021). Tapping into the drug discovery potential of AI. Biopharma Dealmakers, d43747-021-00045–00047. https://doi.org/10.1038/d43747-021-00045-7
  • Smith, K. P., & Kirby, J. E. (2020). Image analysis and artificial intelligence in infectious disease diagnostics. Clinical Microbiology and Infection, 26(10), 1318–1323. https://doi.org/10.1016/j.cmi.2020.03.012
  • Vilhekar, R. S., & Rawekar, A. (2024). Artificial intelligence in genetics. Cureus. https://doi.org/10.7759/cureus.52035
  • Xu, J., Yang, P., Xue, S., Sharma, B., Sanchez-Martin, M., Wang, F., Beaty, K. A., Dehan, E., & Parikh, B. (2019). Translating cancer genomics into precision medicine with artificial intelligence: Applications, challenges and future perspectives. Human Genetics, 138(2), 109–124. https://doi.org/10.1007/s00439-019-01970-5
  • Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C.-W., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., … Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179. https://doi.org/10.1016/j.xinn.2021.100179
  • You, J., McLeod, R. D., & Hu, P. (2019). Predicting drug-target interaction network using deep learning model. Computational Biology and Chemistry, 80, 90–101. https://doi.org/10.1016/j.compbiolchem.2019.03.016

check for update

A Basic Overview of Environment and Sustainable Development
[Volume: 3]

How to Cite
Kaushik Sarkar (2024). Role of Artificial Intelligence in Biological Research: A Short Review © International Academic Publishing House (IAPH), Dr. Nithar Ranjan Madhu, Dr. Tanmay Sanyal, Dr. Koushik Sen, Professor Biswajit (Bob) Ganguly and Professor Roger I.C. Hansell (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 3], pp. 217-224. ISBN: 978-81-969828-3-6
DOI: https://doi.org/10.52756/boesd.2024.e03.014

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device