Cytotoxic Effects of Silver Nanoparticles on Plants: A Potential Threat to the Environment and Its Management

Alokemoy Basu
Department of Botany, Krishnagar Government College, Krishnagar, Nadia – 741101, India.
OrchideID Icon https://orcid.org/0000-0002-4181-9122

Published online: 17th December, 2023

DOI: https://doi.org/10.52756/boesd.2023.e02.015

Keywords: Nanoparticles, nanomaterials, nano waste management.

Abstract:

Nanomaterials are nowadays very common in our daily used products. The most prevalent nanoparticles that we encounter are silver nanoparticles. Almost all electronic appliances, including mobile phones, contain a certain amount of silver nanoparticles. Due to the unmanaged and unforeseen disposal of products containing nanomaterials over the years, silver nanoparticles have become almost omnipresent in the environment in different forms and concentrations. Research has shown that silver nanoparticles, in their lower size range with higher concentration and longer exposure time, can cause severe toxic effects on the plant cell cycle, growth, and development. Therefore, to restrict the encroachment of nanoparticle-containing waste or nano-waste into the environment, there should be a specialized management system that can assess, categorize, and formulate suitable strategies for the safe disposal of those nanowastes.

References:

  • Abdel-Azeem, E. A., & Elsayed, B. A. (2013). Phytotoxicity of silver nanoparticles on Vicia faba seedlings. N. Y. Sci. J., 6(12), 148-156.
  • Albrecht, M. A., Evans, C. W., & Raston, C. L. (2006). Green chemistry and the health implications of nanoparticles. Green Chem., 8(5), 417
  • Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental. health and safety perspective. Nat Nanotechnol., 4, 634–641.
  • Babu, K., Deepa, M. A., Gokul Shankar S., & Rai S. (2008). Effect of Nano-Silver on Cell Division and Mitotic Chromosomes: A Prefatory Siren: Int. J. Nanotech, 2(2), 1-7.
  • Boruc, J., Mylle, E., Duda, M., De Clercq, R., Rombauts, S., Geelen, D., Hilson, P., Inze, D., Van Damme, D., & Russinova, E. (2010). Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. Plant Physiol., 152, 553-565.
  • Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, P. L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Management, 29, 2587–2595.
  • Daphedar, A., & Taranath, T. C. (2018). Characterization and cytotoxic effect of biogenic silver nanoparticles on mitotic chromosomes of Drimia polyantha (Blatt. & McCann) Stearn. Toxicology Reports., 5, 910–918.
  • De Veylder, L., Beeckman, T., & Inze, D. (2007). The ins and outs of the plant cell cycle. Nat. Rev. mol. cell. Biol., 8, 655-665.
  • Dianová, L., Tirpák, F., Halo Jr., M., Lenický, M., Slanina, T., Roychoudhury, S., & Massányi, P. (2023). Effect of platinum nanoparticles on rabbit spermatozoa motility and viability. Int. J. Exp. Res. Rev., 32, 270-277. https://doi.org/10.52756/ijerr.2023.v32.023
  • Donaldson, K., Stone, V., & Macnee, W. (1999). In Particulate Matter: Properties and effects upon health; Maynard, R. L., Howards, C. D., Eds.; BIOS Scientific Publishers, Oxford, p 115.
  • Fouad, A. S., & Hafez, R.M. (2018). The effects of silver ions and silver nanoparticles on cell division and expression of cdc2 gene in Allium cepa root tips. Biologia Plantarum, 62(1), 166-172.
  • Francis, D. (2009). What’s new in the plant cell cycle? – In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (ed): Progress in Botany. Springer-Verlag, Berlin – Heidelberg, 70, 33-49.
  • Gubbins, E. J., Batty, L. C., & Lead, J. R. (2011). Phytotoxicity of silver nanoparticles to Lemna minor L. Environmental Pollution, 159, 1551-1559.
  • Handy, R. D., Owen, R., & Valsami-Jones, E., (2008). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 17, 315–326.
  • Hemerly, A., De Almeida Engler, J., Bergounioux, C., Van Montagu, M., Engler, G., Inzé, D., & Ferreira, P. (1995). Dominant negative mutants of the CDC2 kinase uncouple cell division from iterative plant development. EMBO J., 14, 3925- 3936.
  • Hirayama, T., Imajuku, Y., Anai, T., Matsui, M., & Oka, A. (1991). Identification of two cell-cycle controlling cdc2 gene homologs in Arabidopsis thaliana. Gene, 105, 159-165.
  • John, P. C., Mews, M., & Moore, R. (2001). Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. Protoplasma, 216, 119-42.
  • Kitsios, G., & Doonan, J. H. (2011). Cyclin dependent protein kinases and stress responses in plants. Plant Signal. Behav, 6, 204-209.
  • Kreuter, J., & Gelperina, S. (2008). Use of nanoparticles for cerebral cancer. Tumori., 94, 271–277.
  • Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Science of The Total Environment, 407(19), 5243–5246.
  • Kuriyama, R., & Sakai, H. (1974). Role of tubulin-SH group in polymerization to microtubules. J. Biochem, 76, 651-654.
  • Labeeb, M., Badr, A., & Haroun, S.A. (2020). Ecofriendly Synthesis of Silver Nanoparticles and Their Effects on Early Growth and Cell Division in Roots of Green Pea (Pisum sativum L.). Gesunde Pflanzen, 72, 113–127.
  • Lamsal, K., Kim, S. W., Jung, J. H., Kim, Y. S., Kim, K. S., & Lee, Y. S. (2011). Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology, 39, 26–32.
  • Lee, J., Brooks, M., Gerfen, J. R., Wang, Q., Fotis, C., Sparer, A., Ma, X., Berg, R. H., & Geisler, M. (2014). Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials, 4, 301–318.
  • Leppard, G. G., Mavrocordatosm D., & Perretm D. (2003). Electron-optical characterization of nano- and micro-particles in raw and treated waters: an overview. In: Boller M, editor. Proceedings of nano and Microparticles in Water and Wastewater Treatment, Water Sci. Technol., 50(12), p. 1–8.
  • Limbach, L. K., Bereiter, R., Müller, E., Krebs, R., Gälli, R., & Stark, W. J. (2008). Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol, 42(15), 5828–33.
  • Mukherjee, P., Ahmad, A., Manda, l. D., Senapati, S., Sainkar, S. R., Khan, M. I., Parishcha, R., Ajaykumar, P. V., Alam, M., Kumar, R., & Sastry, M. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett., 1(10), 515–519.
  • Nam, J. M., Thaxton, C. S., & Mirkin, C. A. (2003). Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 301, 1884–1856.
  • Nowack, B., & Bucheli, T. D., (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150, 5–22.
  • Oberdoster, G. (1996). Effect of ultrafine particles in the lung and potential relevance to environmental particles. In Marijnissen, J. M. C., Gradrecht, Kluwer Academic, p.165.
  • Pasupuleti, V. R., Prasad, T. N., Shiekh, R. A., Balam, S. K., Narasimhulu, G., Reddy, C. S., Rahman, I., & Gan, S. H. (2013). Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. Int. J. Nanomed., 8, 3355–3364.
  • Patlolla, A. K., Berry, A., La-Bethani, M., & Tchounwo, P. B. (2012). Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int. J. Environ. Res. Public Health, 9, 1649–1662.
  • Paul, N. S., & Yadav, R. P. (2015). Biosynthesis of silver nanoparticles using plant seeds and their antimicrobial activity. Asian J. Biomed Pharm Sci., 5(45), 26–28.
  • Powell, M. C., Griffin, M. P. A., & Tai, S. (2008). Bottom-up risk regulation? How nanotechnology risk knowledge gaps challenge federal and state environmental agencies. Environmental Management, 42, 426–443.
  • Rajeshkumar, S., Malarkodi, C., Vanaja, M., & Annadurai, G. (2016). Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J. Mol. Struct., 1116, 165–173.
  • Rajalakshmi, K. S., & Paari, K. (2023). A comprehensive study on the assessment of chemically modified Azolla pinnata as a potential cadmium sequestering agent. Int. J. Exp. Res. Rev.36, 1-19. https://doi.org/10.52756/ijerr.2023.v36.001
  • Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., & Bristic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem., 5, 78.
  • Rejeski, D., & Lekas, D. (2008). Nanotechnology field observations: scouting the new industrial west. Journal of Cleaner Production, 16, 1014–1017.
  • Remédios, C., Rosário, F., & Bastos, V. (2012). Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J. Bot., 12, 1-8.
  • Roco, M. C. (2003). Broader societal issue on nanotechnology. J. Nanopart. Res., 5, 181–189.
  • Sadhu, S., Karmakar, T., Chatterjee, A., Kumari, U., Mondal, P., Sarka, S., Sur, T., & Tarafdar, S. (2022). Determination of the antagonistic efficacy of silver nanoparticles against two major strains of Mycobacterium tuberculosis. Int. J. Exp. Res. Rev., 29, 67-72.
  • https://doi.org/10.52756/ijerr.2022.v29.007
  • Saha, A., Mukherjee, P., Roy, K., Sen, K., & Sanyal, T. (2022). A review on phyto-remediation by aquatic macrophytes: A natural promising tool for sustainable management of ecosystem. Int. J. Exp. Res. Rev.27, 9-31. https://doi.org/10.52756/ijerr.2022.v27.002
  • Scenihr (2006). The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), European Commission.
  • Scolnick, D., & Halazonetis, T. (2000). Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature, 406, 430-435.
  • Sengottaiyan, A., Mythili, R., Selvankumar, T., Aravinthan, A., Kamala Kannan, S., Manoharan, K., Thiyagarajan, P., Govarthanan, M., & Kim, J. H. (2016). Green synthesis of silver nanoparticles using Solanum indicum L. and their antibacterial, splenocyte cytotoxic potentials. Res. Chem. Intermediat., 42(4), 3095–3103.
  • Shiraishi, Y., & Toshima, N. (2000). Oxidation of ethylene catalyzed by colloidal dispersions of poly (sodium acrylate)-protected silver nanoclusters. Colloids Surf A Physicochem. Eng. Asp., 169, 59–66.
  • Stals, H., Bauwens, S., Traas, J., Van Montagu, M., Engler, G., & Inzé, D. (1997). Plant CDC2 is not only targeted to the preprophase band, but is also co-located with the spindle, phragmoplast, and chromosomes. FEBS Lett., 418, 229-234.
  • Stamploulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicty of nanoparticles to plants. Environmental Science and Technology, 43, 9473-9479.
  • Sudhakar, R., Gowda, K. N. N., & Venn, G. (2001). Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia, 66, 235-239.
  • Sun, R. W., Chen, R., Chung, N. P., Ho, C. M., Lin, C. L., & Che, C. M. (2005). Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun., 28(40), 5059–5061.
  • Syu, Y. Y., Hung, J. H., Chen, J. C., & Chuang, H. W. (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem., 83, 57-64.
  • Tank, J. G., & Thaker, V. S. (2011). Cyclin-dependent kinases and their role in regulation of plant cell cycle. Biol. Plant, 55, 201- 212.
  • Taranath, T. C., Patil, B. N., Santosh, T.  U., & Sharath, B. S. (2015). Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.—a model approaches. Environ. Sci. Pollut. Res., 22, 8611–8617.
  • Taylor, J. R., Fang, M. M., & Nie, S. (2000). Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal Chem., 72, 1979–1986.
  • Tripathi, D. K., Tripathi, A., Shweta, Singh, S., Singh, Y., Vishwakarma, K., Yadav, G., Sharma, S., Singh, V. K., Mishra, R. K., Upadhyay, R. G., Dubey, N. K., Lee, Y., & Chauhan, D. K. (2017). Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol., 8, 1–16.
  • Westerhoff, P., Zhang, Y., Crittenden, J., & Chen, Y. (2008). Properties of commercial nanoparticles that affect their removal during water treatment. In: Grassian, V. H., Ed. Nanoscience and Nanotechnology: Environmental and Health Impacts. NJ: John Wiley and Sons, p. 71–90.
  • Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N., Peale, F., & Bruchez, M. P. (2003). Immuno fluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol., 21, 41–46.
  • Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., John, C., & Crittenden, J. C. (2008). Stability of commercial metal oxide nanoparticles in water. Wat. Res., 42, 2204–2212.

check for update

A Basic Overview of Environment and Sustainable Development [Volume: 2]

How to Cite
Alokemoy Basu (2023). Cytotoxic Effects of Silver Nanoparticles on Plants: A Potential Threat to the Environment and Its Management. © International Academic Publishing House (IAPH), Shubhadeep Roychoudhury, Tanmay Sanyal, Koushik Sen & Sudipa Mukherjee Sanyal (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 2], pp. 231-243. ISBN: 978-81-962683-8-1.
DOI: https://doi.org/10.52756/boesd.2023.e02.015

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device

Our Other Books –