A Review on the Impact of Chromium Toxicity in Crab

Sujal Dutta
Department of Zoology, Netaji Subhas Open University, DD-26, Sector-I, Salt Lake City, Kolkata– 700064, West
Bengal, India
OrchideID Icon https://orcid.org/0009-0005-4951-5675

Bakul Biswas
Department of Zoology, Netaji Subhas Open University, DD-26, Sector-I, Salt Lake City, Kolkata– 700064, West
Bengal, India
OrchideID Icon https://orcid.org/0009-0001-4510-0879

Bibhas Guha
Department of Zoology, Netaji Subhas Open University, DD-26, Sector-I, Salt Lake City, Kolkata– 700064, West Bengal, India
OrchideID Icon https://orcid.org/0009-0009-1806-7098

Published online:30 June, 2024

DOI: https://doi.org/10.52756/lbsopf.2024.e02.016

Keywords: Chromium toxicity, Crab, Heavy metals, Bioaccumulation

Abstract:

Crabs, an important edible crustacean of coastal ecosystems are subjected to heavy metal accumulation, particularly chromium as a result of environmental pollution and other anthropogenic activities. Chromium has been sourced from natural processes and industrial activities, bioaccumulates in crab tissues, posing risks to both the organism and consumers. Various studies indicate differential tissue accumulation and histological alterations in vital organs of crab, mainly, hepatopancreas, gills, and muscle being primary targets. High chromium concentrations induce histopathological changes, impacting tissue integrity and physiological functions. As a result of chromium toxicity crab’s behaviour is also affected, manifested as hyperactivity, aggression, and impaired motor coordination. Understanding about the impact of chromium on crab physiology and behaviour contributes to mitigate its environmental consequences and ensuring the sustainability of coastal ecosystems. This review underscores the urgent need to monitor heavy metal levels in crab populations to safeguard both ecological health and human consumers.

References:

  • Bairagi, N. (1995). Ocypodidae: Decapoda: Crustacea. Estuarine Ecosystem Series, Part 2: Hugli Matla Estuary, West Bengal. Calcutta: Zoological Survey of India. Pp. 263 – 287.
  • Balasubramanian, K. (1966). Studies in the ecology of the Vellar estuary. 4: Distribution of crabs in the intertidal region. Proceedings of the Second All-India Congress of Zoology, G.S. Thapar, ed. Varanasi. Pp. 307 – 312.
  • Bastami, A.A., & Esmailian, M. (2012). Bioaccumulation of Heavy Metals in Sediment and Crab, Portunus pelagicus From Persian Gulf, Iran.
  • Batvari, B. P., Sivakumar, S., Shanthi, K., Lee, K. J., Oh, B. T., Krishnamoorthy, R. R., & Kamala-Kannan, S. (2016). Heavy metals accumulation in crab and shrimps from Pulicat lake, north Chennai coastal region, southeast coast of India. Toxicology and industrial health, 32(1), 1–6. https://doi.org/10.1177/0748233713475500
  • Becker, D. S., Long, E. R., Proctor, D. M., & Ginn, T. C. (2006). Evaluation of potential toxicity and bioavailability of chromium in sediments associated with chromite ore processing residue. Environmental toxicology and chemistry, 25(10), 2576–2583. https://doi.org/10.1897/05-494r.1
  • Bielicka-Giełdoń, A., Bojanowska, I., & Wiśniewski, A. (2005). Two Faces of Chromium – Pollutant and Bioelement. Polish Journal of Environmental Studies, 14.
  • Bhadra, S. (1995). Portunidae: Decapoda: Crustacea. Zool. Surv. India Estuarine Ecosystem Series. Part 2: Hugli Matla Estuary, pp. 249-262.
  • Bhardwaj, V., Kumar, P., & Singhal, G. (2014). Toxicity of heavy metals pollutants in textile mills effluents. Int. J. Sci. Eng. Res, 5(7), 2229 – 5518.
  • Bochenek, I., Protasowicki, M., & Brucka-Jastrzebska, E (2008). Concentrations of Cd, Pb, Zn, and Cu in Roach, Rutilus rutilis (L.) from the lower reaches of the Oder River, and their correlation with concentrations of heavy metals in bottom sediments collected in the same area. Arch Polish Fish, 16, 21–27.
  • Das, A., & Mishra, S. (2009). Hexavalent chromium (VI): Environment pollutant and health hazard. J. Environ. Res. Dev., 2, 386-392.
  • Das, M., Kundu, J., & Misra, K. K. (2015). Nutritional aspect of crustaceans especially freshwater crabs of India. International Journal of Advanced Research in Biological Science, 2: 7-19.
  • Das, P., & Mishra, S. (2009). Hexavalent chromium [Cr (VI)]: yellow water pollution and its remediation. Sarovar Saurabh ENVIS Newsl. Wetl. Ecosyst, 5(2), 1-8.
  • Dazy, M., Eric, B., Sylvie, C., Eric, M., Jean-François, M., & Jean-François, F. (2008). Antioxidant enzyme activities as affected by trivalent and hexavalent chromium species in Fontinalis antipyretica. Chemosphere, 73(3), 281-290. Doi: https://doi.org/10.1016/j.chemosphere.2008.06.044.
  • Dev Roy, M. K., & Bhadra, S. (2008). Marine and estuarine crabs (Crustacea: Decapoda: Brachyura). Fauna of Goa, State Fauna Series, Zool Surv India, Kolkata .16:109 -154.
  • Dev Roy, M. K., & Nandi, N. C. (2007). Brachyuran diversity in coastal ecosystems of Tamil Nadu. J Environ Sociobiol, 4(2), 169–192.
  • Dev Roy, M. K., & Rath, S. (2017). An inventory of crustacean fauna from Odisha Coast, India. J. Environ. Sociobiol, 14(1), 49–112.
  • Dhanya, Viswam. (2015). Investigation of nutritive value of crabs along Kerala coast, Final Report of Minor Research Project, University Grants Commission New Delhi.
  • Dhungana, T. P., & Yadav, P. (2009). Determination of Chromium in Tannery Effluent and Study of Adsorption of Cr (VI) on Saw dust and Charcoal from Sugarcane Bagasses. Journal of Nepal Chemical Society, 23, 93-101.
  • Elumalai, M., Antunes, C., & Guilhermino, L. (2005). Alterations of reproductive parameters in the crab Carcinus maenas after exposure to metals. Water, Air, and Soil Pollution, 160, 245-258. Doi:10.1007/s11270-005-2992-9. https://doi.org/10.1007/s11270-005-2992-9
  • Erdogrul, Z., & Ates, D.A. (2006). Determination of cadmium and copper in fish samples from Sir and Menzelet dam lake Kahramanmaras. Turkey – Environ. Monit. Assess, 117, 281- 290. https://doi.org/10.1007/s10661-006-0806-1
  • Fatemi, F., & Khoramnejadian, S. (2016). Investigation of Cadmium and Arsenic Accumulation in Portunus pelagicus along the Asalouyeh Coast. Iran Journal of Earth, Environment and Health Sciences, 2(1), 34. http://dx.doi.org/10.4103/2423-7752.181805
  • Fisayo, C. J., Adesola, H., Ganiat, O., Omoniyi, E., Oluwole, O., Odujoko, A., & Victor, C. (2017). Metal uptake, oxidative stress and histopathological alterations in gills and hepatopancreas of Callinectes amnicola exposed to industrial effluent. Ecotoxicology and Environmental Safety, 139, 179-193. https://doi.org/10.1016/j.ecoenv.2017.01.032
  • Garcia-Montelongo, F., Díaz, C., Galindo, L., Larrechi, M. S., & Rius, X. (1994). Heavy metals in three fish species from the coastal waters of Santa Cruz de Tenerife (Canary Islands). Sci Mar, 58, 179 -183. https://doi.org/10.1007/bf00197824
  • He, X., & Li, P. (2020). Surface water pollution in the middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr6+): occurrence, sources and health risks. Expos. Health, 12, 385 – 401. https://doi.org/10.1007/s12403-020-00344-x
  • Heasman, M. P., & Fielder, D.R. (1983). Laboratory spawning and mass rearing of the mangrove crab, Scylla serrata (Forskal), from first zoea to first crab stage. Aquaculture, 34, 303-316. https://doi.org/10.1016/0044-8486(83)90210-7
  • Hosseini, M., Nabavi, S. M. B., Monikh, F. A., & Peery, S. (2014). Blue swimming crab, Portunus pelagicus (Linnaeus, 1758) as monitors of mercury contamination from Persian gulf, South Iran. Indian Journal of Geo-Marine Sciences, 43(3), 377 -383.
  • Ikem, A., & Egiebor, N.O. (2005). Assessment of trace elements in canned fishes (mackerel, tuna, salmon, sardines and herrings) marketed in Georgia and Alabama (United States of America). J Food Comp Anal, 18, 771-787. https://doi.org/10.1016/j.jfca.2004.11.002
  • Imad, A., Armand, M., Marie-Noëlle, P., Danièle, P., Hélène, P., Justine, F., François R., Philippe, R., Maximilien, B., Eric, B. & Davide, A. L. (2022). Effects and bioaccumulation of Cr (III), Cr (VI) and their mixture in the freshwater mussel Corbicula fluminea. Chemosphere, (297): 134090.
  • Iyengar G. V. (1991). Milestones in biological trace element research. The Science of the Total Environment, 100 Spec No, pp. 1–15. https://doi.org/10.1016/0048-9697(91)90370-t
  • Jakimska-Nagórska, A., Konieczka, P., Skóra, K., & Namieśnik, J. (2011). Bioaccumulation of metals in tissues of marine animals, Part II: Metal Concentrations in Animal Tissues. Polish Journal of Environmental Studies, 20, 1127-1146.
  • Jitar, O., Teodosiu, C., Nicoara, M., & Plavan, G. (2013). Study of Heavy Metal Pollution and Bioaccumulation in the Black Sea Living Environment. Environmental engineering and management journal, 12, 271-276. https://doi.org/10.30638/eemj.2013.032.
  • Jordao, C. P., Pereira, M. G., Bellato, C. R., Pereira, J. L., & Matos, A.T. (2002). Assessment of water systems for contaminants from domestic and industrial sewages. Environ Monit Assess, 79, 75 -100. https://doi.org/10.1023/A:1020085813555
  • Karega, S., Bhargavi, M., & Divekar, S.V. (2015). Treatment of wastewater from the chrome plating industry by ion-exchange method. Int. Res. J. Eng. Technol, 4(7), 393 -401.
  • Kim, J. H., & Kang, J. C. (2016). The chromium accumulation and its physiological effects in juvenile rockfish, Sebastes schlegelii, exposed to different levels of dietary chromium (Cr (6+)) concentrations. Environ Toxicol Pharmacol., 41, 152-158. https://doi.org/10.1016/j.etap.2015.12.001
  • Krishnamurti, J. A., & Nair, R. V. (1999). Concentration of metals in shrimps and crabs from Thane-Bassein creek system, Maharastra. Indian J. of Mar. Sci., 28, 92-95. http://drs.nio.org/drs/handle/2264/1727
  • Lian, G., Wang, B., Lee, X., Li, L., Liu, T., & Lyu, W. (2019). Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers’ grains. Sci. Total Environ, (697): 134119.
  • Lourduraj, A V., Azhagu, M., Azhagu, Peranandam, R., Balakrishnan, B., Kodhilmozhin, J., & Ramaswamy, B. (2014). The application of histo-cytopathological biomarkers in the mud crab Scylla serrata (Forskal) to assessheavy metal toxicity in Pulicat Lake, Chennai. Marine Pollut. Bull, 81(1), 85-93. https://doi.org/10.1016/j.marpolbul.2014.02.016
  • Madhu, N. R., Sarkar, B., Slama, P., Jha, N. K., Ghorai, S. K., Jana, S. K., Govindasamy, K., Massanyi, P., Lukac, N., Kumar, D., Kalita, J. C., Kesari, K. K., & Roychoudhury, S. (2022). Effect of Environmental Stressors, Xenobiotics, and Oxidative Stress on Male Reproductive and Sexual Health. In: S. Roychoudhury, K. K. Kesari (eds.), Oxidative Stress and Toxicity in Reproductive Biology and Medicine. Advances in Experimental Medicine and Biology, 1391, 33-58. ISBN: 978-3-031-12966-7.
  • Mansouri, B., Ebrahimpour, M., & Babaei, B. (2011). Bioaccumulation and elimination of nickel in the organs of black fish (Capoetafusca). Toxicol. Ind. Health, (28): 361 – 368.
  • Migliore, L., & Nicola Giudici, M. (1990). Toxicity of heavy metals to Asellus aquaticus (L.) (Crustacea, isopoda). Hydrobiologia, 203(3), 155 -164.
  • Nakkeeran, E., Patra, C., Shahnaz, T., Rangabhashiyam, S., & Selvaraju, N. (2018). Continuous biosorption assessment for the removal of hexavalent chromium from aqueous solutions using Strychnos nux vomica fruit shell. Bioresour. Technol. Rep., 3, 256 -260. https://doi.org/10.1016/j.biteb.2018.09.001
  • Nanda, P. K., Das, A. K., Dandapat, P., Dhar, P., Bandyopadhyay, S., Dib, A. L., Lorenzo, J., & Gagaoua, M. (2021). Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review. Trends in Food Science and Technology.
  • Olmedo, P., Navas-Acien, A., Hess, C., Jarmul, S., & Rule, A (2016). A direct method for e-cigarette aerosol sample collection. Environ Res, 149, 151-156. https://doi.org/10.1016/j.envres.2016.05.008
  • Palaniappan, PL. RM., & Karthikeyan, S. (2009). Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel. J. Environ Sci., 21, 229 -236. https://doi.org/10.1016/s1001-0742(08)62256-1
  • Pandiyan, J., Mahboob, S., Govindarajan, M., Al-Ghanim, KA., Ahmed, Z., Al-Mulhm, N., & Krishnappa, K. (2021). An assessment of level of heavy metals pollution in the water, sediment and aquatic organisms: A perspective of tackling environmental threats for food security. Saudi Journal of Biological Sciences, 28(2), 1218-1225. https://doi.org/10.1016/j.sjbs.2020.11.072
  • Prasad, S., Krishna Kumar, Y., Sandeep, K., Neha, G., Marina, M. S., Cabral-Pinto, S., Neyara, R., & Javed, A. (2021). Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. Journal of Environmental Management, 85, 301-4797. DOI: https://doi.org/10.1016/j.jenvman.2021.112174.
  • Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess, 191, 419. Doi: https://doi.org/10.1007/s10661-019-7528-7.
  • Rai, V., Poornima, V., Shri Nath, S., & Shanta, M. (2004). Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L., Plant Science, 167(5), 1159-1169. https://doi.org/10.1016/j.plantsci.2004.06.016.
  • Rainbow, P.S. (2007). Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ. Int, 33, 576 -582. https://doi.org/10.1016/j.envint.2006.05.007
  • Rao, K. R., & Doughtie, D.G. (1984). Histopathological changes in grass shrimp exposed to chromium, pentachlorophenol and dithiocarbamates. Marine Environmental Research, 14(1-4), 371–395. https://doi.org/10.1016/0141-1136(84)90089-8
  • Sanaa, A. M. (2020). Histopathology and heavy metal bioaccumulation in some tissues of Luciobarbus xanthopterus collected from Tigris River of Baghdad, Iraq. Egyptian Journal of Aquatic Research, 46,123-129.
  • Sas, W., Głuchowski, A., Radziemska, M., Dzięcioł, J., & Szymanski, ´A. (2015). Environmental and geotechnical assessment of the steel slags as a material for road structure. Mater, 8(8), 4857- 4875. https://doi.org/10.3390/ma8084857
  • Sayyad, N. R., Khan, A. K., Ansari, N., Hashmi, S. M., Shaikh, M. A. (2007). Heavy Metal Concentrations in Different body Part of Crab, Barytelphusa guerini from Godavari River. Control Pollution, 23: 363-368.
  • Sharma, D., Ahmed, A., & Lodhi, S. (2023). Chromium toxicity in aquatic ecosystem: a review. International Journal of Creative Research Thoughts, 11, 2320-2882.
  • Sharma, U. D., Khan, M. A., Lodhi, H. S., Tiwari, K. J., Shukla, S. (2008). Acute Toxicity and behavioural anomalies in freshwater prawn, Macrobrachium dayanum (Crustacea- Decapoda) exposed to chromium. Aquaculture, 9(1), 1-6.
  • Shanker, A., & Bandi, V. (2019). Chromium: Environmental Pollution, Health Effects and Mode of Action. Encyclopedia of Environmental Health. https://doi.org/10.1016/B978-0-444-52272-6.00390-1
  • Shou, Z., Chenghong, F., Weimin, Q., Xiaofeng, C., Junfeng, N., & Zhenyao, S. (2012). Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary, China. Marine Pollution Bulletin, 64(6), 1163-1171.
  • Sivaperumal, P., Sankar, T. V., & Viswanathan, Nair. P. G. (2007). Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-a-vis international standards. Food Chem, 102, 612 – 620. https://doi.org/10.1016/j.foodchem.2006.05.041
  • Sneddon, C. (2012). Chromium and its Adverse Effects on the Environment. Case Study. Department of Earth Sciences, Montana State University, Bozeman.
  • Srivastav, A., Yadav, K. K., Yadav, S., Gupta, N., Singh, J. K., Katiyar, R., & Kumar, V. (2018). Nano-phytoremediation of pollutants from contaminated soil environment: current scenario and future prospects. In: Ansari, A., Gill, S., Gill, R.R. Lanza G., Newman, L. (Eds.), Phytoremediation. Springer, Cham.
  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D.J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental Toxicology, 3, 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6. https://doi.org/10.1007%2F978-3-7643-8340-4_6
  • Uysal, K., Emre, Y., & Köse, E. (2008). The determination of heavy metal accumulation ratios in muscle, skin and gills of some migratory fish species by inductively coupled plasma-optical emission spectrometry (ICP-OES) in Beymelek Lagoon (Antalya/Turkey). Microchem J., 90, 67 -70. https://doi.org/10.1007/s10661-008-0540-y
  • Vasanthi, L. A., Muruganandam, A., Revathi, P., Basakr, B., Jayapriyan, K., Baburajendran, R., & Munuswamy N. (2014). The application of histo-cytopathological biomarkers in the mud crab Scylla serrata (Forskal) to assess heavy metal toxicity in Pulicat Lake, Chennai. Marine Pollution Bulletin, 81(1), 85-93. https://doi.org/10.1016/j.marpolbul.2014.02.016
  • Yoshinaga, M., Ninomiya, H., Al Hossain, M. A., Sudo, M., Akhand, A. A., Ahsan, N., Alim, M.A., Khalequzzaman, M., Iida, M., Yajima, I., & Ohgami, N (2018). A comprehensive study including monitoring, assessment of health effects, and development of a remediation method for chromium pollution. Chemosphere, 201, 667 – 675.
  • Williams, S., Priya, V., & Karim, R. (2022). Bioaccumulation of heavy metals in edible tissue of crab (Scylla serrata) from an estuarine Ramsar site in Kerala, South India. Watershed Ecology and the Environment, 4, 10. https://doi.org/1016/j.wsee.2022.06.001.
  • Zanders, I. P., & Rojas, W. E. (1996). Osmotic and ionic regulation in the fiddler crab Uca rapax acclimated to dilute and hypersaline seawater. Marine Biology, 125(2), 315 -320. https://doi.org/10.1007/BF00346312

check for update

Life as Basic
Science: An Overview and Prospects for the Future Volume: 2

How to Cite
Sujal Dutta, Bakul Biswas, Bibhas Guha (2024). A Review on the Impact of Chromium Toxicity in Crab. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Ashis Kumar Panigrahi, Dr. Rose Stiffin and Dr. Jayata Kumar Das(eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 2, pp. 196-205. ISBN: 978-81-969828-6-7
DOI: https://doi.org/10.52756/lbsopf.2024.e02.016

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device