Supercapacitor: An Offer to Sustainable Green Energy

Nirmalendu  Hui
Krishnagar Government College, Krishnagar, Nadia, West Bengal, India

Published online:8 August, 2024

DOI: https://doi.org/10.52756/boesd.2024.e03.016

Keywords: EDLC, Pseudocapacitor, Hybrid capacitor, Power density, Energy storage system

Abstract:

With the increasing demand for sustainable green energy to minimize environmental pollution and reduce the use of fossil fuels, it is imperative to find alternative, environmentally friendly approaches to efficiently manage energy conversion and storage systems. In this context, supercapacitors or ultracapacitors have garnered significant attention, not only due to their high power density, high capacity with low internal resistance, rapid charging and discharging processes, and long life expectancy but also due to their environmentally friendly nature. The most widely used storage devices are batteries, which contain heavy metals such as zinc, lead, manganese, and mercury. These heavy metals cause long-term severe environmental pollution. In contrast, the waste management of supercapacitors is environmentally safe, as no heavy metals or harmful chemicals are used. The advent of hybrid capacitor technology and the discovery of graphene have made this technology even more attractive. This chapter briefly discusses the characteristics, basic storage principles, advantages, limitations, and scope of applications.

References:

  • Abbott, D. (2012). Limits to growth: Can nuclear power supply the world’s needs? Bulletin of the Atomic Scientists, 68(5), 23–32. https://doi.org/10.1177/0096340212459124
  • Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M., & Van Schalkwijk, W. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 4(5), 366–377. https://doi.org/10.1038/nmat1368
  • Boom, R., & Peterson, H. (1972). Superconductive energy storage for power systems. IEEE Transactions on Magnetics, 8(3), 701–703. https://doi.org/10.1109/TMAG.1972.1067425
  • Burke, A. (2000). Ultracapacitors: Why, how, and where is the technology. Journal of Power Sources, 91(1), 37–50. https://doi.org/10.1016/S0378-7753(00)00485-7
  • Chu, A., & Braatz, P. (2002). Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. Journal of Power Sources, 112(1), 236–246. https://doi.org/10.1016/S0378-7753(02)00364-6
  • Chuang, C.-M., Huang, C.-W., Teng, H., & Ting, J.-M. (2010). Effects of carbon nanotube grafting on the performance of electric double layer capacitors. Energy & Fuels, 24(12), 6476–6482. https://doi.org/10.1021/ef101208x
  • Conway, B. E. (1999). Electrochemical supercapacitors. Springer US. https://doi.org/10.1007/978-1-4757-3058-6
  • Demirbaş, A. (2006). Global renewable energy resources. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28(8), 779–792. https://doi.org/10.1080/00908310600718742
  • Du, C., Yeh, J., & Pan, N. (2005). High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology, 16(4), 350–353. https://doi.org/10.1088/0957-4484/16/4/003
  • Frackowiak, E., & Béguin, F. (2001). Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39(6), 937–950. https://doi.org/10.1016/S0008-6223(00)00183-4
  • Frackowiak, E., & Béguin, F. (2002). Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon, 40(10), 1775–1787. https://doi.org/10.1016/S0008-6223(02)00045-3
  • Gao, Y. (2017). Graphene and polymer composites for supercapacitor applications: A review. Nanoscale Research Letters, 12(1), 387. https://doi.org/10.1186/s11671-017-2150-5
  • Gerlich, G., & Tscheuschner, R. D. (2009). Falsification of the atmospheric co 2 greenhouse effects within the frame of physics. International Journal of Modern Physics B, 23(03), 275–364. https://doi.org/10.1142/S021797920904984X
  • Guo, C., Li, C., Zhang, K., Cai, Z., Ma, T., Maggi, F., Gan, Y., El-Zein, A., Pan, Z., & Shen, L. (2021). The promise and challenges of utility-scale compressed air energy storage in aquifers. Applied Energy, 286, 116513. https://doi.org/10.1016/j.apenergy.2021.116513
  • Gür, T. M. (2018). Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy & Environmental Science, 11(10), 2696–2767. https://doi.org/10.1039/C8EE01419A
  • Hadjipaschalis, I., Poullikkas, A., & Efthimiou, V. (2009). Overview of current and future energy storage technologies for electric power applications. Renewable and Sustainable Energy Reviews, 13(6–7), 1513–1522. https://doi.org/10.1016/j.rser.2008.09.028
  • Hossain, E., Faruque, H., Sunny, Md., Mohammad, N., & Nawar, N. (2020). A comprehensive review on energy storage systems: Types, comparison, current scenario, applications, barriers, and potential solutions, policies, and future prospects. Energies, 13(14), 3651. https://doi.org/10.3390/en13143651
  • Hu, C. C., Chang, K. H., Lin, M. C., & Wu, Y. T. (2006). Design and tailoring of the nanotubular arrayed architecture of hydrous ruo 2 for next generation supercapacitors. Nano Letters, 6(12), 2690–2695. https://doi.org/10.1021/nl061576a
  • Hu, C. C., & Wang, C. C. (2003). Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. Journal of The Electrochemical Society, 150(8), A1079. https://doi.org/10.1149/1.1587725
  • Hussain, A., Arif, S. M., & Aslam, M. (2017). Emerging renewable and sustainable energy technologies: State of the art. Renewable and Sustainable Energy Reviews, 71, 12–28. https://doi.org/10.1016/j.rser.2016.12.033
  • Ke, Y. F., Tsai, D. S., & Huang, Y. S. (2005). Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates. Journal of Materials Chemistry, 15(21), 2122. https://doi.org/10.1039/b502754c
  • Kim, B. K., Sy, S., Yu, A., & Zhang, J. (2015). Electrochemical supercapacitors for energy storage and conversion. In J. Yan (Ed.), Handbook of Clean Energy Systems (1st ed., pp. 1–25). Wiley. https://doi.org/10.1002/9781118991978.hces112
  • Kötz, R., & Carlen, M. (2000). Principles and applications of electrochemical capacitors. Electrochimica Acta, 45(15–16), 2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6
  • Kusko, A., & Dedad, J. (2007). Stored energy—Short-term and long-term energy storage methods. IEEE Industry Applications Magazine, 13(4), 66–72. https://doi.org/10.1109/MIA.2007.4283511
  • Li, H., Cheng, L., & Xia, Y. (2005). A hybrid electrochemical supercapacitor based on a 5 v li-ion battery cathode and active carbon. Electrochemical and Solid-State Letters, 8(9), A433. https://doi.org/10.1149/1.1960007
  • Liu, J., Chen, X., Cao, S., & Yang, H. (2019). Overview on hybrid solar photovoltaic-electrical energy storage technologies for power supply to buildings. Energy Conversion and Management, 187, 103–121. https://doi.org/10.1016/j.enconman.2019.02.080
  • Miller, J. R. (2006). Electrochemical capacitor thermal management issues at high-rate cycling. Electrochimica Acta, 52(4), 1703–1708. https://doi.org/10.1016/j.electacta.2006.02.056
  • Miller, J. R., & Simon, P. (2008). Electrochemical capacitors for energy management. Science, 321(5889), 651–652. https://doi.org/10.1126/science.1158736
  • Mitali, J., Dhinakaran, S., & Mohamad, A. A. (2022). Energy storage systems: A review. Energy Storage and Saving, 1(3), 166–216. https://doi.org/10.1016/j.enss.2022.07.002
  • Olabi, A. G., Wilberforce, T., Abdelkareem, M. A., & Ramadan, M. (2021). Critical review of flywheel energy storage system. Energies, 14(8), 2159. https://doi.org/10.3390/en14082159
  • Parikh, J., & Shukla, V. (1995). Urbanization, energy use and greenhouse effects in economic development. Global Environmental Change, 5(2), 87–103. https://doi.org/10.1016/0959-3780(95)00015-G
  • Reddy, R. N., & Reddy, R. G. (2003). Sol–gel MnO2 as an electrode material for electrochemical capacitors. Journal of Power Sources, 124(1), 330–337. https://doi.org/10.1016/S0378-7753(03)00600-1
  • Rehman, S., Al-Hadhrami, L. M., & Alam, Md. M. (2015). Pumped hydro energy storage system: A technological review. Renewable and Sustainable Energy Reviews, 44, 586–598. https://doi.org/10.1016/j.rser.2014.12.040
  • Rugani, B., Huijbregts, M. A. J., Mutel, C., Bastianoni, S., & Hellweg, S. (2011). Solar energy demand (SED) of commodity life cycles. Environmental Science & Technology, 45(12), 5426–5433. https://doi.org/10.1021/es103537f
  • Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345. https://doi.org/10.1016/j.rser.2007.10.005
  • Shi, H. (1996). Activated carbons and double layer capacitance. Electrochimica Acta, 41(10), 1633–1639. https://doi.org/10.1016/0013-4686(95)00416-5
  • Shi, W., Zhu, J., Sim, D. H., Tay, Y. Y., Lu, Z., Zhang, X., Sharma, Y., Srinivasan, M., Zhang, H., Hng, H. H., & Yan, Q. (2011). Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 21(10), 3422. https://doi.org/10.1039/c0jm03175e
  • Tehrani, Z., Thomas, D. J., Korochkina, T., Phillips, C. O., Lupo, D., Lehtimäki, S., O’Mahony, J., & Gethin, D. T. (2017). Large-area printed supercapacitor technology for low-cost domestic green energy storage. Energy, 118, 1313–1321. https://doi.org/10.1016/j.energy.2016.11.019
  • Uzunoglu, M., & Alam, M. S. (2006). Dynamic modeling, design, and simulation of a combined pem fuel cell and ultracapacitor system for stand-alone residential applications. IEEE Transactions on Energy Conversion, 21(3), 767–775. https://doi.org/10.1109/TEC.2006.875468
  • Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 41(2), 797–828. https://doi.org/10.1039/C1CS15060J
  • Wang, J., Zhang, S. Q., Guo, Y. Z., Shen, J., Attia, S. M., Zhou, B., Zheng, G. Z., & Gui, Y. S. (2001). Morphological effects on the electrical and electrochemical properties of carbon aerogels. Journal of The Electrochemical Society, 148(6), D75. https://doi.org/10.1149/1.1368104
  • Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, T., & Hansen, J. E. (1976). Greenhouse Effects due to Man-Made Perturbations of Trace Gases: Anthropogenic gases may alter our climate by plugging an atmospheric window for escaping thermal radiation. Science, 194(4266), 685–690. https://doi.org/10.1126/science.194.4266.685
  • Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M., & Chen, Y. (2009). Supercapacitor devices based on graphene materials. The Journal of Physical Chemistry C, 113(30), 13103–13107. https://doi.org/10.1021/jp902214f
  • Yüksel, I. (2010). Hydropower for sustainable water and energy development. Renewable and Sustainable Energy Reviews, 14(1), 462–469. https://doi.org/10.1016/j.rser.2009.07.025
  • Zhang, L. L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520. https://doi.org/10.1039/b813846j
  • Zhang, X., Zhang, H., Li, C., Wang, K., Sun, X., & Ma, Y. (2014). Recent advances in porous graphene materials for supercapacitor applications. RSC Adv., 4(86), 45862–45884. https://doi.org/10.1039/C4RA07869A
  • Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., & Zhang, L. (2009). Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy, 34(11), 4889–4899. https://doi.org/10.1016/j.ijhydene.2009.04.005

check for update

A Basic Overview of Environment and Sustainable Development
[Volume: 3]

How to Cite
Nirmalendu  Hui (2024). Supercapacitor: An Offer to Sustainable Green Energy © International Academic Publishing House (IAPH), Dr. Nithar Ranjan Madhu, Dr. Tanmay Sanyal, Dr. Koushik Sen, Professor Biswajit (Bob) Ganguly and Professor Roger I.C. Hansell (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 3], pp. 234-245. ISBN: 978-81-969828-3-6
DOI: https://doi.org/10.52756/boesd.2024.e03.016

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device