Duckweed: A Natural Solution for Wastewater Treatment
Kavita Ghosal
Prasannadeb Women’s College, Department of Botany, Jalpaiguri, West Bengal, India
https://orcid.org/0000-0003-4843-3684
Published online:8 August, 2024
DOI: https://doi.org/10.52756/boesd.2024.e03.019
Keywords: Duckweeds, Wastewater management, heavy metals, Lemna species, Phytoremediation, application
Abstract:
Duckweeds (members of Lemnaceae) are a highly effective solution for wastewater treatment, known for their fast growth, efficient nutrient uptake, and adaptability to diverse environments. This review presented duckweed’s role in purifying polluted wastewater by removing contaminants such as nitrogen, phosphorus, heavy metals and other pollutants. Through bioaccumulation and phytoremediation, duckweed significantly lowers Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and total dissolved solids (TDS). Its rapid biomass production also presents biofuel, feed, or biofertilizer opportunities. Duckweed further improves water clarity by reducing turbidity and suspended solids, offering a sustainable, cost-effective wastewater treatment option that supports environmental and resource conservation goals.
References:
- Al-Baldawi, I. A., Yasin, S. R., Jasim, S. S., Abdullah, S. R. S., Almansoory, A. F., & Ismail, N. (2022). Removal of copper by Azolla filiculoides and Lemna minor: phytoremediation potential, adsorption kinetics and isotherms. Heliyon, 8(11), e11456. https://doi.org/10.1016/j.heliyon.2022.e11456
- Ali, Z., Waheed, H., Kazi, A. G., Hayat, A., & Ahmad, M. (2015). Duckweed. In Elsevier eBooks (pp. 411–429). https://doi.org/10.1016/b978-0-12-803158-2.00016-3
- Amare, E., Kebede, F., & Mulat, W. (2018). Wastewater treatment by Lemna minor and Azolla filiculoides in tropical semi-arid regions of Ethiopia. Ecological Engineering, 120, 464–473. https://doi.org/10.1016/j.ecoleng.2018.07.005
- Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z., Li, Q., Zeng, X., Liu, Y., & Li, Y. (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53(1). https://doi.org/10.1186/s40659-020-00312-4
- Appenroth, K., Sree, K. S., Bog, M., Ecker, J., Seeliger, C., Böhm, V., Lorkowski, S., Sommer, K., Vetter, W., Tolzin-Banasch, K., Kirmse, R., Leiterer, M., Dawczynski, C., Liebisch, G., & Jahreis, G. (2018). Nutritional Value of the Duckweed Species of the Genus Wolffia (Lemnaceae) as Human Food. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00483
- Aziz, K. H. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F., & Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Advances, 13(26), 17595–17610. https://doi.org/10.1039/d3ra00723e
- Badr El-Din SM, Abdel-Aziz RA. (2018). Potential uses of aquatic plants for wastewater treatment. J. Microbiol Biotechnol. Rep., 2(2), 47-48.
- Barroso, G. M., Santos, E. A. D., Pires, F. R., Galon, L., Cabral, C. M., & Santos, J. B. D. (2023). Phytoremediation: A green and low-cost technology to remediate herbicides in the environment. Chemosphere, 334, 138943. https://doi.org/10.1016/j.chemosphere.2023.138943
- Bechtaoui, N., Rabiu, M. K., Raklami, A., Oufdou, K., Hafidi, M., & Jemo, M. (2021). Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.679916
- Bhat, S. A., Bashir, O., Haq, S. a. U., Amin, T., Rafiq, A., Ali, M., Américo-Pinheiro, J. H. P., & Sher, F. (2022). Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303, 134788. https://doi.org/10.1016/j.chemosphere.2022.134788
- Bisewska, J., Sarnowska, E. I., & Tukaj, Z. H. (2012). Phytotoxicity and antioxidative enzymes of green microalga (Desmodesmus subspicatus) and duckweed (Lemna minor) exposed to herbicides MCPA, chloridazon and their mixtures. Journal of Environmental Science and Health Part B, 47(8), 814–822. https://doi.org/10.1080/03601234.2012.676443
- Borisjuk, N., Peterson, A. A., Lv, J., Qu, G., Luo, Q., Shi, L., Chen, G., Kishchenko, O., Zhou, Y., & Shi, J. (2018). Structural and Biochemical Properties of Duckweed Surface Cuticle. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00317
- Buda, A.R., Williard, K.W.J., Schoonover, J.E., Srinivasan, M.S., (2015). Featured collection introduction: agricultural hydrology and water quality. J. Am. Water Resour. Assoc. 51 (4), 877–882.
- Cao, L. and Wang, W. (2010) Wastewater Management in Freshwater Pond Aquaculture in China. In: Sumi, A., Fukushi, K., Honda, R. and Hassan, K.M., Eds., Sustainability in Food and Water: An Asian Perspective, pp. 181-190.
- Chandini, R.K., Kumar, R. and Om, P. (2019) The Impact of Chemical Fertilizers on our Environment and Ecosystem. In: Research Trends in Environmental Sciences, 2nd Edition, pp. 71-86.
- Chen, G., Fang, Y., Huang, J., Zhao, Y., Li, Q., Lai, F., Xu, Y., Tian, X., He, K., Jin, Y., Tan, L., & Zhao, H. (2018). Duckweed systems for eutrophic water purification through converting wastewater nutrients to high-starch biomass: comparative evaluation of three different genera (Spirodela polyrhiza, Lemna minor and Landoltia punctata) in monoculture or polyculture. RSC Advances, 8(32), 17927–17937. https://doi.org/10.1039/c8ra01856a
- Chen, Q., Jin, Y., Zhang, G., Fang, Y., Xiao, Y., & Zhao, H. (2012). Improving Production of Bioethanol from Duckweed (Landoltia punctata) by Pectinase Pretreatment. Energies, 5(8), 3019–3032. https://doi.org/10.3390/en5083019
- Cui, N. W., Xu, N. J., Cheng, N. J. J., & Stomp, N. a. M. (2011). Starch Accumulation in Duckweed for Bioethanol Production. Biological Engineering, 3(4), 187–197. https://doi.org/10.13031/2013.37123
- Dalu, J., & Ndamba, J. (2003). Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe). Physics and Chemistry of the Earth Parts a/B/C, 28(20–27), 1147–1160. https://doi.org/10.1016/j.pce.2003.08.036
- Das, A., Saha, A., Sarkar, S., Sadhu, S., Sur, T., Agarwal, S., Mazumdar, S., Bashar, S., Tarafdar, S., & Parvez, S. S. (2022). A multidimensional study of wastewater treatment. Int. J. Exp. Res. Rev., 28, 30-37. https://doi.org/10.52756/ijerr.2022.v28.005
- Das, S., Tamili, D. P., & Madhu, N.R. (2023). Impacts of Microplastics on Zooplankton. © International Academic Publishing House (IAPH), Shubhadeep Roychoudhury, Tanmay Sanyal, Koushik Sen & Sudipa Mukherjee Sanyal (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 2], pp. 288-303. https://doi.org/10.52756/boesd.2023.e02.019
- Dosnon-Olette, R., Couderchet, M., & Eullaffroy, P. (2009). Phytoremediation of fungicides by aquatic macrophytes: Toxicity and removal rate. Ecotoxicology and Environmental Safety, 72(8), 2096–2101. https://doi.org/10.1016/j.ecoenv.2009.08.010
- Dosnon-Olette, R., Couderchet, M., Arfaoui, A. E., Sayen, S., & Eullaffroy, P. (2010). Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species. The Science of the Total Environment, 408(10), 2254–2259. https://doi.org/10.1016/j.scitotenv.2010.01.057
- Firth, A. E. J., Nakasu, P. Y. S., Fennell, P. S., & Hallett, J. P. (2024). An Ionic Liquid-Based Biorefinery Approach for Duckweed Utilization. ACS sustainable resource management, 1(5), 842–856. https://doi.org/10.1021/acssusresmgt.3c00008
- Frink, C. R., Waggoner, P. E., & Ausubel, J. H. (1999). Nitrogen fertilizer: Retrospect and prospect. Proceedings of the National Academy of Sciences, 96(4), 1175–1180. https://doi.org/10.1073/pnas.96.4.1175
- Gatidou, G., Stasinakis, A. S., & Iatrou, E. I. (2014). Assessing single and joint toxicity of three phenyl urea herbicides using Lemna minor and Vibrio fischeri bioassays. Chemosphere, 119, S69–S74. https://doi.org/10.1016/j.chemosphere.2014.04.030
- Ghazi, R. M., Yusoff, N. R. N., Halim, N. S. A., Wahab, I. R. A., Latif, N. A., Hasmoni, S. H., Zaini, M. a. A., & Zakaria, Z. A. (2023). Health effects of herbicides and its current removal strategies. Bioengineered, 14(1). https://doi.org/10.1080/21655979.2023.2259526
- Godfrey, R.K. and Wooten, J.W. Aquatic and Wetland Plants of Southeastern United States, University of Georgia Press, Athens, GA (1979).
- Hegazy, A., Emam, M., Lovett-Doust, L., Azab, E., & El-Khatib, A. (2017). Response of duckweed to lead exposure: phytomining, bioindicators and bioremediaton. Desalination and Water Treatment, 70, 227–234. https://doi.org/10.5004/dwt.2017.20545
- Hegazy, A., Kabiel, H., & Fawzy, M. (2009). Duckweed as heavy metal accumulator and pollution indicator in industrial wastewater ponds. Desalination and Water Treatment, 12(1–3), 400–406. https://doi.org/10.5004/dwt.2009.956
- Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366. https://doi.org/10.1016/j.jenvman.2016.07.090
- Iqbal, J., Javed, A., & Baig, M. A. (2019). Growth and nutrient removal efficiency of duckweed (Lemna minor) from synthetic and dumpsite leachate under artificial and natural conditions. PLoS ONE, 14(8), e0221755. https://doi.org/10.1371/journal.pone.0221755
- Khan, F., Siddique, A. B., Shabala, S., Zhou, M., & Zhao, C. (2023). Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants, 12(15), 2861. https://doi.org/10.3390/plants12152861
- Kostopoulou, S., Ntatsi, G., Arapis, G., & Aliferis, K. A. (2019). Assessment of the effects of metribuzin, glyphosate, and their mixtures on the metabolism of the model plant Lemna minor L. applying metabolomics. Chemosphere, 239, 124582. https://doi.org/10.1016/j.chemosphere.2019.124582
- Krupka, M., Michalczyk, D. J., Žaltauskaitė, J., Sujetovienė, G., Głowacka, K., Grajek, H., Wierzbicka, M., & Piotrowicz-Cieślak, A. I. (2021). Physiological and Biochemical Parameters of Common Duckweed Lemna minor after the Exposure to Tetracycline and the Recovery from This Stress. Molecules, 26(22), 6765. https://doi.org/10.3390/molecules26226765
- Li, Y., Sallach, J. B., Zhang, W., Boyd, S. A., & Li, H. (2018). Insight into the distribution of pharmaceuticals in soil-water-plant systems. Water Research, 152, 38–46. https://doi.org/10.1016/j.watres.2018.12.039
- Liu, C., Dai, Z., & Sun, H. (2016). Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress. Journal of Environmental Management, 187, 497–503. https://doi.org/10.1016/j.jenvman.2016.11.006
- Lu, Y., Kronzucker, H. J., & Shi, W. (2021). Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters. Environmental pollution (Barking, Essex: 1987), 287, 117587. https://doi.org/10.1016/j.envpol.2021.117587
- Lu, Y., Zhou, Y., Nakai, S., Hosomi, M., Zhang, H., Kronzucker, H. J., & Shi, W. (2014). Stimulation of nitrogen removal in the rhizosphere of aquatic duckweed by root exudate components. Planta, 239(3), 591–603. https://doi.org/10.1007/s00425-013-1998-6
- Marschner, H. (2012). Marschner’s Mineral Nutrition of Higher Plants. Cambridge, MA: Academic press.
- Mateos-Cárdenas, A., Scott, D. T., Seitmaganbetova, G., NAM, V. P. F., John, O., & AK, J. M. (2019). Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). The Science of the Total Environment, 689, 413–421. https://doi.org/10.1016/j.scitotenv.2019.06.359
- Mitsou, K., Koulianou, A., Lambropoulou, D., Pappas, P., Albanis, T., & Lekka, M. (2005). Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere, 62(2), 275–284. https://doi.org/10.1016/j.chemosphere.2005.05.026
- Mohedano, R. A., Costa, R. H., Tavares, F. A., & Filho, P. B. (2012). High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresource Technology, 112, 98–104. https://doi.org/10.1016/j.biortech.2012.02.083
- Muller, R., Berghahn, R., & Hilt, S. (2010). Herbicide effects of metazachlor on duckweed (Lemna minor and Spirodela polyrhiza) in test systems with different trophic status and complexity. Journal of Environmental Science and Health Part B, 45(2), 95–101. https://doi.org/10.1080/03601230903471829
- Mustafa, H. M., & Hayder, G. (2020). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 12(1), 355–365. https://doi.org/10.1016/j.asej.2020.05.009
- Nagaraju, T. V., BM, S., Chaudhary, B., Prasad, C. D., & R, G. (2023). Prediction of ammonia contaminants in the aquaculture ponds using soft computing coupled with wavelet analysis. Environmental Pollution, 331, 121924. https://doi.org/10.1016/j.envpol.2023.121924
- OECD. OECD Guidelines for the Testing of Chemicals Section 2—Effects on Biotic Systems. OECD Publishing; Paris, France: 2006. Lemna sp. growth inhibition test; p. 22.
- Oosterhuis, D. M., Loka, D. A., Kawakami, E. M., & Pettigrew, W. T. (2014). The Physiology of Potassium in Crop Production. In Advances in agronomy (pp. 203–233). https://doi.org/10.1016/b978-0-12-800132-5.00003-1
- Pagliuso, D., Grandis, A., Fortirer, J. S., Camargo, P., Floh, E. I. S., & Buckeridge, M. S. (2022). Duckweeds as Promising Food Feedstocks Globally. Agronomy, 12(4), 796. https://doi.org/10.3390/agronomy12040796
- Panfili, I., Bartucca, M. L., & Del Buono, D. (2018). The treatment of duckweed with a plant biostimulant or a safener improves the plant capacity to clean water polluted by terbuthylazine. The Science of the Total Environment, 646, 832–840. https://doi.org/10.1016/j.scitotenv.2018.07.356
- Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.962619
- Prasertsup, P., & Ariyakanon, N. (2010). Removal of Chlorpyrifos by Water Lettuce (Pistia stratiotesL.) and Duckweed (Lemna minor L.). International Journal of Phytoremediation, 13(4), 383–395. https://doi.org/10.1080/15226514.2010.495145
- Priya, A., Avishek, K., & Pathak, G. (2011). Assessing the potentials of Lemna minor in the treatment of domestic wastewater at pilot scale. Environmental Monitoring and Assessment, 184(7), 4301–4307. https://doi.org/10.1007/s10661-011-2265-6
- Radić, S., Stipaničev, D., Cvjetko, P., Marijanović Rajčić, M., Sirac, S., Pevalek-Kozlina, B., & Pavlica, M. (2011). Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicology and environmental safety, 74(2), 182–187. https://doi.org/10.1016/j.ecoenv.2010.06.011
- Rai, P. K., & Nongtri, E. S. (2024). Heavy metals/-metalloids (As) phytoremediation with Landoltia punctata and Lemna sp. (duckweeds): coupling with biorefinery prospects for sustainable phytotechnologies. Environmental science and pollution research international, 31(11), 16216–16240. https://doi.org/10.1007/s11356-024-32177-5
- Reinhold, D.M. (2007). Fate of fluorinated organic pollutants in aquatic plant systems: Studies with Lemnaceae and Lemnaceae tissue cultures. Doctoral dissertation. Georgia Institute of Technology
- Rezania, S., Taib, S. M., Din, M. F. M., Dahalan, F. A., & Kamyab, H. (2016). Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587–599. https://doi.org/10.1016/j.jhazmat.2016.07.053
- Rice, P. J., Anderson, T. A., & Coats, J. R. (1997). Phytoremediation of Herbicide-Contaminated Surface Water with Aquatic Plants. In ACS symposium series (pp. 133–151). https://doi.org/10.1021/bk-1997-0664.ch010
- Rozman, U., & Kalčíková, G. (2022). The Response of Duckweed Lemna minor to Microplastics and Its Potential Use as a Bioindicator of Microplastic Pollution. Plants, 11(21), 2953. https://doi.org/10.3390/plants11212953
- Saha, P., Banerjee, A., & Sarkar, S. (2014). Phytoremediation Potential of Duckweed (Lemna minor L.) On Steel Wastewater. International Journal of Phytoremediation, 17(6), 589–596. https://doi.org/10.1080/15226514.2014.950410
- Sekomo, C. B., Rousseau, D. P., Saleh, S. A., & Lens, P. N. (2012). Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecological Engineering, 44, 102–110. https://doi.org/10.1016/j.ecoleng.2012.03.003
- Selvarani, A.J., Padmavathy, P., Srinivasan, A., & Jawahar, P. (2015). Performance of Duckweed (Lemna minor) on different types of wastewater treatment. International Journal of Fisheries and Aquatic Studies, 2, 208-212.
- Sembada, A. A., Theda, Y., & Faizal, A. (2024). Duckweeds as edible vaccines in the animal farming industry. 3 Biotech, 14(10). https://doi.org/10.1007/s13205-024-04074-8
- Shi, H., Duan, M., Li, C., Zhang, Q., Liu, C., Liang, S., Guan, Y., Kang, X., Zhao, Z., & Xiao, G. (2020). The change of accumulation of heavy metal drive interspecific facilitation under copper and cold stress. Aquatic Toxicology, 225, 105550. https://doi.org/10.1016/j.aquatox.2020.105550
- Sikorski, Ł., Baciak, M., Bęś, A., & Adomas, B. (2019). The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Aquatic Toxicology, 209, 70–80. https://doi.org/10.1016/j.aquatox.2019.01.021
- Singh, A., Sharma, A., Verma, R. K., Chopade, R. L., Pandit, P. P., Nagar, V., Aseri, V., Choudhary, S. K., Awasthi, G., Awasthi, K. K., & Sankhla, M. S. (2022). Heavy Metal Contamination of Water and Their Toxic Effect on Living Organisms. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.105075
- Statistica Research Department. (2024, October). Global fertilizer demand by nutrient 2011-2024 [Graph].
- Statista. https://www.statista.com (https://www.statista.com/statistics/438930/fertilizer-demand-globally-by-nutrient/#statisticContainer)
- Stewart, J. J., Adams, W. W., López-Pozo, M., Garcia, N. D., McNamara, M., Escobar, C. M., & Demmig-Adams, B. (2021). Features of the Duckweed Lemna That Support Rapid Growth under Extremes of Light Intensity. Cells, 10(6), 1481. https://doi.org/10.3390/cells10061481
- Sylvester-Bradley, R., & Kindred, D. R. (2009). Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany, 60(7), 1939–1951. https://doi.org/10.1093/jxb/erp116
- Tagun, R., & Boxall, A. B. A. (2018). The Response of Lemna minor to Mixtures of Pesticides That Are Commonly Used in Thailand. Bulletin of Environmental Contamination and Toxicology, 100(4), 516–523. https://doi.org/10.1007/s00128-018-2291-y
- Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and the Environment. EXS, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
- Teodorović, I., Knežević, V., Tunić, T., Čučak, M., Lečić, J. N., Leovac, A., & Tumbas, I. I. (2011). Myriophyllum aquaticum versus Lemna minor: Sensitivity and recovery potential after exposure to atrazine. Environmental Toxicology and Chemistry, 31(2), 417–426. https://doi.org/10.1002/etc.748
- Thakur, D., Jha, A., Chattopadhyay, S., & Chakraborty, S. (2021). A review on opportunities and challenges of nitrogen removal from wastewater using microalgae. Int. J. Exp. Res. Rev., 26, 141-157. https://doi.org/10.52756/ijerr.2021.v26.011
- Thayaparan, M., Iqbal, S. S., & Iqbal, M. C. M. (2015). Phytoremediation Potential of Lemna minor for Removal of Cr(VI) in Aqueous Solution at the Optimum Nutrient Strength. OUSL Journal, 9(0), 97. https://doi.org/10.4038/ouslj.v9i0.7329
- Tian, X., Fang, Y., Jin, Y., Yi, Z., Li, J., Du, A., He, K., Huang, Y., & Zhao, H. (2021). Ammonium detoxification mechanism of ammonium-tolerant duckweed (Landoltia punctata) revealed by carbon and nitrogen metabolism under ammonium stress. Environmental Pollution (Barking, Essex: 1987), 277, 116834. https://doi.org/10.1016/j.envpol.2021.116834
- Tippery, N.P., & Les, D.H. (2020). Tiny Plants with Enormous Potential: Phylogeny and Evolution of Duckweeds. The Duckweed Genomes.
- Toyama, T., Hanaoka, T., Tanaka, Y., Morikawa, M., & Mori, K. (2017). Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent. Bioresource Technology, 250, 464–473. https://doi.org/10.1016/j.biortech.2017.11.054
- Tront, J. M., & Saunders, F. M. (2007). Sequestration of a fluorinated analog of 2,4-dichlorophenol and metabolic products by L. minor as evidenced by 19F NMR. Environmental pollution (Barking, Essex: 1987), 145(3), 708–714. https://doi.org/10.1016/j.envpol.2006.05.039
- Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112
- Uysal, Y. (2013). Removal of chromium ions from wastewater by duckweed, Lemna minor L. by using a pilot system with continuous flow. Journal of Hazardous Materials, 263, 486–492. https://doi.org/10.1016/j.jhazmat.2013.10.006
- Van Schaik, A., & Reuter, M. A. (2014). Material-Centric (Aluminum and Copper) and Product-Centric (Cars, WEEE, TV, Lamps, Batteries, Catalysts) Recycling and DfR Rules. In Elsevier eBooks (pp. 307–378). https://doi.org/10.1016/b978-0-12-396459-5.00022-2
- Walsh, É., Margassery, L. M., Rodriguez-Sanchez, A., Wall, D., Bolger, P., Jansen, M. A., & O’Leary, N. (2024). Integration of microbial bioreactors and Lemna minor cultivation for sustainable treatment of dairy processing wastewater. Journal of Water Process Engineering, 67, 106290. https://doi.org/10.1016/j.jwpe.2024.106290
- Wang, F., Liu, D., Qu, H., Chen, L., Zhou, Z., & Wang, P. (2016). A full evaluation for the enantiomeric impacts of lactofen and its metabolites on aquatic macrophyte Lemna minor. Water Research, 101, 55–63. https://doi.org/10.1016/j.watres.2016.05.064
- Wang, X., Hu, L., Wu, D., Huang, T., Zhang, B., Cai, G., Gao, G., Liu, Z., Huang, X., & Zhong, Z. (2022). Large-scale screening and characterization of Cd accumulation and ultrastructural deformation in duckweed. The Science of the Total Environment, 832, 154948. https://doi.org/10.1016/j.scitotenv.2022.154948
- White, P. J., & Karley, A. J. (2010). Potassium: In Cell biology of metals and nutrients in plants (Cell Biology of Metals and Nutrients, pp. 199–224). Springer, Berlin.
- Xu, J., Cui, W., Cheng, J. J., & Stomp, A. (2011). Production of high-starch duckweed and its conversion to bioethanol. Biosystems Engineering, 110(2), 67–72. https://doi.org/10.1016/j.biosystemseng.2011.06.007
- Xu, J., Zhao, H., Stomp, A., & Cheng, J. J. (2012). The production of duckweed as a source of biofuels. Biofuels, 3(5), 589–601. https://doi.org/10.4155/bfs.12.31
- Yang, G. (2022). Duckweed Is a Promising Feedstock of Biofuels: Advantages and Approaches. International Journal of Molecular Sciences, 23(23), 15231. https://doi.org/10.3390/ijms232315231
- Yilmaz, Ö., & Taş, B. (2021). Feasibility and assessment of the phytoremediation potential of green microalga and duckweed for zeta-cypermethrin insecticide removal. Desalination And Water Treatment, 209, 131–143. https://doi.org/10.5004/dwt.2021.26484
- Ying-Ru, Z., Yu-Fang, L., Hai-Lin, Z., & Wei-Ming, S. (2013). Aerobic denitrifying characteristics of duckweed rhizosphere bacterium RWX31. African Journal of Microbiology Research, 7(3), 211–219. https://doi.org/10.5897/ajmr12.1802
- Zhao, Y., Fang, Y., Jin, Y., Huang, J., Ma, X., He, K., He, Z., Wang, F., & Zhao, H. (2014). Microbial community and removal of nitrogen via the addition of a carrier in a pilot-scale duckweed-based wastewater treatment system. Bioresource Technology, 179, 549–558. https://doi.org/10.1016/j.biortech.2014.12.037
- Zhao, Z., Shi, H., Duan, D., Li, H., Lei, T., Wang, M., Zhao, H., & Zhao, Y. (2015). The influence of duckweed species diversity on ecophysiological tolerance to copper exposure. Aquatic Toxicology, 164, 92–98. https://doi.org/10.1016/j.aquatox.2015.04.019
- Zhou Y, Borisjuk, N. (2019). Small Aquatic Duckweed Plants with Big Potential for the Production of Valuable Biomass and Wastewater Remediation. International Journal of Environmental Sciences & Natural Resources, 16(4). https://doi.org/10.19080/ijesnr.2019.16.555942
- Zhou, Y., Stepanenko, A., Kishchenko, O., Xu, J., & Borisjuk, N. (2023). Duckweeds for Phytoremediation of Polluted Water. Plants, 12(3), 589. https://doi.org/10.3390/plants12030589
- Ziegler, P., Appenroth, K. J., & Sree, K. S. (2023). Survival Strategies of Duckweeds, the World’s Smallest Angiosperms. Plants, 12(11), 2215. https://doi.org/10.3390/plants12112215
How to Cite
Kavita Ghosal (2024). Duckweed: A Natural Solution for Wastewater Treatment © International Academic Publishing House (IAPH), Dr. Nithar Ranjan Madhu, Dr. Tanmay Sanyal, Dr. Koushik Sen, Professor Biswajit (Bob) Ganguly and Professor Roger I.C. Hansell (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 3], pp. 273-291. ISBN: 978-81-969828-3-6
DOI: https://doi.org/10.52756/boesd.2024.e03.019
SHARE WITH EVERYONE