A review of allelopathic potential of some of the economically important members of the family Poaceae with special reference to rice for weed control and sustainable agriculture

Abhijit Datta
Department of Botany, Ambedkar College, Fatikroy, Unakoti Tripura, India
OrchideID Icon https://orcid.org/0000-0001-5621-7733

H. Reshmi Singha
Department of Botany, Govt. Degree College, Dharmanagar, Tripura(N)-799253, India
OrchideID Icon https://orcid.org/0000-0002-3461-3900

Rajat Debnath
Department of Zoology, Ambedkar College, Fatikroy, Unakoti Tripura, India
OrchideID Icon https://orcid.org/0000-0002-7675-3856

Sandipan Das
Department of Zoology, Ambedkar College, Fatikroy, Unakoti Tripura, India
OrchideID Icon https://orcid.org/0000-0003-2596-3674

Anwesha Dey
Department of Human Physiology, Ambedkar College, Fatikroy, Unakoti Tripura, India
OrchideID Icon https://orcid.org/0000-0001-6548-8295

Bhanumati Sarkar
Department of Botany, Acharya Prafulla Chandra College, New Barrackpore, West Bengal, India
OrchideID Icon https://orcid.org/0000-0001-9410-9311

Folguni Laskar
Department of Botany, Govt. Degree College, Dharmanagar, Tripura(N)-799253, India
OrchideID Icon https://orcid.org/0009-0005-9219-2912

Suman Adhikari
Department of Chemistry, Govt. Degree College, Dharmanagar, Tripura(N)-799253, India
OrchideID Icon https://orcid.org/0000-0002-6382-5400

Published online:30th November, 2024

DOI: https://doi.org/10.52756/lbsopf.2024.e03.002

Keywords: Allelochemicals, Mechanism of action, Poaceae, sustainable agriculture, herbicides

Abstract:

The present study is focused on reviewing the allelopathic potentiality of the family Poaceae concerning the nature of action (stimulation or inhibition) and their mechanism of action. The plant family Poaceae has been the topic of inquiry in a number of studies due to the fact that it demonstrates a significant amount of allelopathic potential. A number of secondary metabolites like phenolics, flavonoids, and alkaloids are frequently found in the family Poaceae, both cultured as well as in wild species. Growth and development of plants sometimes get encouraged below the threshold levels of allelochemicals but the harsh reduction of growth may be detected with allelochemicals exceeding the threshold concentration, which may be sensitivity-dependent for the receiving species. Some researchers illustrated that soil collected from the donor plant’s base prominently reduced or, to some extent, encouraged the plants’ development under experimentation. Allelochemicals have the potential effect on genetic and physiological parameters of plants of other plants and plants of the Poaceae family. Bio-standardization experiments using petri plates with methanol or aqueous extracts or fractions, along with contributory allelochemicals of phenolic nature, confirmed the considerable phytotoxicity in a concentration-dependent manner. This article makes an effort to examine and summarise previous and more recent data about the allelopathic activity of this family along with their potential for use in the development of natural product-based, environmentally friendly herbicides for sustainable agriculture, and to stimulate future discussion on this topic.

References:

  • Adhikari, S., Das, A., Datta, A., Madhu, N. R., & Pathak, S. (2024). Analyzing Protein-Lipid Interactions by Nuclear Magnetic Resonance (NMR). Biochemical Techniques for Analyzing Protein-Lipid Interactions, 33-54.
  • Afzal B, Bajwa R, Javaid A(2000). Allelopathy and VA mycorrhiza. VII: Cultivation of Vigna radiata and Phaseolus vulgaris under allelopathic stress of Imperata cylindrica.Pakistan Journal of Biological Sciences 3(11): 1926-1928.doı: 10.3923/pjbs.2000.1926.1928.
  • Alam SM, Ala SA, Azmi AR, Khan MR, Ansari R (2001). Invasion: from molecules and genes to species, Allelopathy and its role in agriculture.  On line Journal of Biological Sciences1: 308-315.
  • Allen VG, Brown CP, Kellison R, Green P, ZilverbergCJ, Johnson CJ (2012). Integrating cotton and beef production in the Texas southern high plains: Water use and measures of productivity. Agronomy Journal 104 (6): 1625-1642.doi:10.2134/agronj2012.0121
  • Alsaadawi LS, Zwain KHY&Shahata HA (1998). Allelopathic inhibition of rice by wheat residues. Allelopathy Journal 5:163-169.
  • Anonymous (199). International Allelopathy Society, First World Congress on allelopaqthy: A science for the future. Cadiz, Spain.
  • Asaduzzaman, M.; Pratley, J.E.; An, M.; Luckett, D.J.; Lemerle, D. Metabolomics differentiation of canola genotypes: Toward an understanding of canola allelochemicals. Front. Plant Sci. 2015, 5, 765. [CrossRef]
  • Bauer PJ, Reeves DW (1999). A comparison of winter cereal species and planting dates as residue cover for cotton grown with conservation tillage. Crop Science 39: 1824-1830.
  • Ben-Hammouda M, Ghorbal H, Kremer RJ, Oueslati O (2002). Autotoxicity of barley. Journal of Plant Nutrition 25 (6): 1155-1161.doi.org/10.1081/PLN-120004379.
  • Bertholdsson NO (2004). Variation in allelopathic activity over 100 years of barley selection and breeding.  Weed Research 44:78-86. doi.org/10.1111/j.1365-3180.2003.00375.x
  • Bhattacharya, P., Adhikari, S., Samal, A. C., Das, R., Dey, D., Deb, A., … & Santra, S. C. (2020). Health risk assessment of co-occurrence of toxic fluoride and arsenic in groundwater of Dharmanagar region, North Tripura (India). Groundwater for sustainable development, 11, 100430.
  • Bhowmik, P.C.; Inderjit. Challenges and opportunities in implementing allelopathy for natural weed management. Crop. Prot. 2003, 22, 661–671. [CrossRef]
  • Blum U, Gerig TM, Worsham AD, Holappa LD,  King LD (1992). Allelopathic activity in wheat-conventional and wheat-no-till soils: Development of soil extract bioassays. Journal of Chemical Ecology 18: 2191-2221.doi.org/10.1007/BF00984946
  • Bouhaouel I, Richard G, Fauconnier M-L, Ongena M, Franzil L, Gfeller A, Slim Amara H, du Jardin P. Identification of Barley (Hordeum vulgare L. subsp. vulgare) Root Exudates Allelochemicals, Their Autoallelopathic Activity and Against Bromus diandrus Roth. Germination. Agronomy. 2019; 9(7):345. https://doi.org/10.3390/agronomy9070345
  • Burgos NR, Talbert RE (2000). Differential activity of allelo- chemicals from Secalecerealein seedling bioassays. Weed Science 48: 302-310.
  • Burgos NR, Talbert RE, Kim KS, Kuk YI (2004). Growth inhibition and root ultrastructure of Cucumber seedlings exposed to allelochemicals from rye (Secale cereale). Journal of Chemical Ecology 30 : 671-689.
  • Burgos NR, Talbert RE, Mattice JD (1999). Variety and age differences in the production of allelopathy by Secale cereal. Weed Science 47: 25-29.
  • Chaimovitsh D, Abu-Abied M, Belausov E, Rubin B, Dudai N, Sadot E (2010). Microtubules are an intracellular target of the plant terpene citral. The Plant Journal61: 399-408.doi: 10.1111/j.1365-313X.2009.04063.x
  • Chaimovitsh D, Rogovoy O, Altshuler O, Belausov E, Abu-Abied M, Rubin B, Sadot E, Dudai N (2012)The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells. Plant Biology 14(2):354-364. doi: 10.1111/j.1438-8677.2011.00511.x. 
  • Cheema ZA, Ahmad S, Majeed S, Ahmad N (1988). Allelopathic effects of wheat straw on germination and seedling growth of two weed species and cotton. Pakistan Journal of Weed Science Research 1: 118-122.
  • Chiapusio G, Sánchez AM, Reigosa MJ (1997). Do germination indices adequately reflect allelochemical effects on the germination process.  Journal of Chemical Ecology23: 2445-2453.
  • Chon SU, Kim Y M (2004). Herbicidal potential and quantification of suspected allelochemicals from four grass crop extracts. Journal of Agronomy Crop Science 190: 145-150.
  • Chou CH, Chiang YC, Cheng HH (1981). Autointoxication mechanism of Oryza sativa, III. Effect of temperature on phytotoxin production during rice straw decomposition in soil. Journal of Chemical Ecology 7(4): 741-752.
  • Chou CH, Patrick Z A (1976). Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. Journal of Chemical Ecology2 : 369-387.
  • Contreras EE, Niemeyer HM (1997). DIMBOA glucoside, a wheat chemical defense affects host acceptance and suitability of Sitobionavenue to the cereal aphid parasitoid Aphidiusrhopalosiphi. Journal of Chemical Ecology 24: 371-382.
  • Contreras, E. F. & H. M. Niemeyer. 1997. DIMBOA glucoside, a wheat chemical defense affects host acceptance and suitability of Sitobion avenae to the cereal aphid parasitoid Aphidius rhopalosiphi. J. Chem. Ecol. 24: 371–382.
  • Corcuera LJ (1993). Biochemical basis for the resistance of   barley to aphids. Phytochemistry33: 741-747.
  • Coreuera LJ, ArgandofiaVH, Zdfiiga GE (1992). Allelochemicals in wheat and barley: Role in plant- insect interactions. in Rizvi SJHand Rizvi V (eds.), Allelopathy: basic and applied aspects. Chapman & Hall, London. Pp. 119-127.
  • Cruz OR, Anaya AL, Hernández-Bautista BE, Laguna-Hernández G (1998). Effect of allelochemical stress produced by Sicyos deppei on the root ultrastructure of Cucurbita ficifolia and Phaseolus vulgaris. Journal of Chemical Ecoogy24 (12):  2039-2057.doi: 10.1023/A:1020733625727
  • Czarnota MA, Paul RN, Weston LA, Duke SO (2003). Anatomy of sorgoleone- secreting root hairs of Sorghum species.  International Journal of Plant Science 164 (6): 861-866.
  • Dhima KV, Vasilakoglou IB, Eleftherohorinos IG, Lithourgidis AS (2006). Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Science 46:345-352. doi: 10.2135/cropsci2005-0186.
  • Dilday RH, Yan WG, Moldenhauer KAK, Gravois KA (1998). Allelopathic activity in rice for controlling major aquatic weeds. In: Olofsdotter M. Allelopathy in Rice. Manila, the Philippines: International Rice Research Institute,pp.7-26.
  • Dudai N, Poljakoff-Mayber A, Mayer M, Putievsky E, Lerner  R (1999). Essential oils as allelochemicals and their potential use as bioherbicides. Journal of Chemical Ecology 25 (5): 1079-1089. doi: 10.1023/A:1020881825669.
  • Dzyubenko NN, Petrenko NI (1971). On biochemical interaction of plant and weeds. In: Grodzinsky, A.M. (Ed.), Physiological–Biochemical Basis of Plant interactions in Phytocenoses. NaukovaDumka, Kiev, Vol.2, pp. 60-66.
  • Einheling EA, Rasmussen JA, Hejl AM, Souza L E (1993). Effects of root exudate sorgoleone on photo- synthesis. Journal of Chemical Ecology 19: 369-375.
  • Einhellig FA (1995). Allelopathy current status and future goals. In: Allelopathy: Organisms, processes and applications. (Eds., Inderjit KM, Dakshini M and Einhellig FA), American  Chemical Soceity, Washington DC, pp. 1-24.
  • Fang CX, Xiong J, Qiu L, Wang HB, Song BQ, He HB, Lin RY, Lin WX (2009). Analysis of gene expressions associated with increased allelopathy in rice (Oryza sativa L.) induced by exogenous salicylic acid. Plant Growth Regulation 57: 163–172.
  • Farhoudi R, Zangane HS, Saeedipour S (2012).Allelopathical effect of barley [Hordeum vulgare (L.) cv. Karon] on germination and lipid peroxidation of wild mustard seedling. Researchon Crop 13: 467-471.
  • Farhoudi R,Lee DJ (2013).Allelopathic Effects of Barley Extract (Hordeum vulgare) on Sucrose Synthase Activity, Lipid Peroxidation and Antioxidant Enzymatic Activities of Hordeum spontoneum and Avena ludoviciana.   Proceedings of the National Academy of Sciences, India Section B: Biological Sciences83:447–452. Doi: 10.1007/s40011-012-0137-7
  • Favaretto A, Chini SO, Scheffer-Basso SM, Sobottka AM , Bertol CD, Perez NB (2015).  Pattern of allelochemical distribution in leaves and roots of tough love grass (Eragrostis plana Nees). Australian Journal of  Crop Science 9: 1119-1125.
  • Favaretto, A., Scheffer-Basso, S. M., & Perez, N. B. (2018). Allelopathy in Poaceae species present in Brazil. A review. Agronomy for Sustainable Development38, 1-12.
  • Fay PK and Duke WB (1977). An assessment of allelopathic potential in Avena germplasm. Weed Science 25: 224-228.
  • Food and Agriculture Organization (1991). 1990 production yearbook. Basic Data Unit, Statistics Division, FAO Statistic Series. Vol. 44. Food and Agriculture Organization of the United Nations, Rome.
  • Food and Agriculture Organization (1992). 1991 production yearbook. Basic Data Unit, Statistics Division, FAO Statistic Series. Vol.45. Food and Agriculture Organization of the United Nations, Rome.
  • Food and Agriculture Organization (1993). 1992 production yearbook. Basic Data Unit, Statistics Division, FAO Statistic Series. Vol. 46. Food and Agriculture Organization of the United Nations, Rome.
  • Food and Agriculture Organization (1995). 1994 production yearbook. Basic Data Unit, Statistics Division, FAO Statistic Series. Vol. 48. Food and Agriculture Organization of the United Nations, Rome.
  • Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, SimcoxK, Gierl A (1997). Analysis of a chemical plant defense mechanism in grasses.  Science 277 (5326): 696-699.doi: 10.1126/science.277.5326.696.
  • Friebe A, Roth U, Kiick P, Sehnabl H&Sehulz M (1997). Effects of 2, 4-dihydroxy-1,4-benzoxazin- 3-ones on the activity of plasma membrane HATPase. Phytochemistry 44 (6): 979-983.
  • Geddes CM, Cavalieri A, Daayf F, Gulden RH (2015). The allelopathic potential of hairy vetch (Viciavillosa Roth.) mulch. American Journal of Plant Sciences 6: 2651-2663.
  • Ghimire, B.K.; Yu, C.Y.; Ghimire, B.; Seong, E.S.; Chung, I.M. Allelopathic potential of phenolic compounds in Secale cereale cultivars and its relationship with seeding density. Appl. Sci. 2019, 9, 3072.
  • Ghosh, K., Adhikari, S., Fröhlich, R., Petsalakis, I. D., & Theodorakopoulos, G. (2011). Experimental and theoretical anion binding studies on coumarin linked thiourea and urea molecules. Journal of Molecular Structure1004(1-3), 193-203.
  • Givovich A, Sandstrrm J, Niemeyer HM, Pettersson J (1994). Presence of a hydroxamic acid glucoside in wheat phloem sap and its consequences for performance of Rhopalosiphumpadi(L.) (Homoptera: Aphididae). Journal of Chemical Ecology20: 1923-1930.
  • Gonzàlez VM, JK azimir, Nimbal C, Weston LA, Cheniae GM (1997). Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. Journal of Agricultural and  Food Chemistry45: 1415-1422.
  • Grana E,  Sotelo T, Diaz-Tielas C,  Araniti F, Krasuska U, Bogatek R,  Reigosa MJ, Sánchez-Moreiras AM (2013). Citral Induces Auxin and Ethylene-Mediated Malformations and Arrests Cell Division in Arabidopsis thaliana Roots. Journal of Chemical Ecology39(2):271-82. doi: 10.1007/s10886-013-0250.
  • Gross E (1999). Allelopathy in benthic and littoral areas case studies on allelochemicals from benthic cyanobacteria and submerged macrophytes. In: Inderjit, K M, Dakshini M & C L Foy (eds), Principles and Practices in Plant Ecology Allelochemical Interactions, CRC Press, Boca Raton, pp. 179-199.
  • Grün S, Frey M,Gierl A (2005). Evolution of the indole alkaloid biosynthesis in the genus Hordeum: distribution of gramine and DIBOA and isolation of the benzoxazinoid biosynthesis genes from Hordeumlechleri.   Phytochemistry 66 (11): 1264-1272.
  • Guenzi WD, McCallaTM, Norstadt FA (1967). Presence and persistence of phytotoxic substances in wheat, oat, corn and sorghum residues. Agronomy Journal 59: 163-165.
  • Hallak AMG, Davide LC, Souza IF (1999).Effects of sorghum (Sorghum bicolor L.) root exudates on the cell cycle of the bean plant (Phaseolus vulgaris L.) root. Genetics and Molecular Biology 22: 95-99.
  • Harun MAYA, Robinson RW, Johnson J, Uddin MN (2014).Allelopathic potential of Chrysanthemoides monilifera subsp. monilifera (boneseed): a novel weapon in the invasion processes. South African  Journal of Botany 93: 157-166.
  • He HQ, Lin WX, Liang YY, Song BQ, Ke YQ, GuoYC, Liang K J (2005). Analyzing the molecular mechanism of crop allelopathy by using differential proteomics. Acta Ecologica Sinica 25: 3141-3146.
  • Hedin PA, Davis M, Williams WP (1993). 2-hydroxy-4,7-dimethoxy-l,4-benzoxazin-3-one (N- O-Me-DIMBOA), a possible toxic factor in corn to the south western corn borer. Journal of Chemical Ecology 19: 531-542.
  • Heywood V H (1978). Flowering plants of the world (Oxford University Press, London).
  • Jabran, K.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Allelopathy for weed control in agricultural systems. Crop. Prot. 2015, 72, 57–65.
  • Javaid A, Shafique S, Bajwa R, Shafique  S (2006). Effect of aqueous extracts of allelopathic crops on germination and growth of Parthenium hysterophorus  L. South African Journal of Botany 72 (4): 609-612.
  • Junaedi A, JungWS, Chung IM, Kim KH (2008). Differentially expressed genes of potentially allelopathic rice in response against barnyardgrass. Journal of Crop Science and Biotechnology10(4): 231-236.
  • Kato-Noguchi H, Kosemura S, Yamamura S (1998). Allelopathic potential of 5-chloro-6-methoxy-2-benzo-xazolinone. Phytochemistry48: 433-435.
  • Kato-Noguchi H, Takeshi I, Kujime H (2010). The relation between growth inhibition and secretion level of momilactone B from rice root. Journal of Plant Interactions 5 (2): 87-90.
  • Kaur HI, Kaushik S (2005).Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiology and Biochemistry 43: 77-81.
  • Ko J, Eom SH, Kim MJ, Yu CY, Lee N (2005). Allelopathy of rice husk on barnyardgrass. Journal of Agronomy 4: 282-292.
  • Kong CH, Chen XH, Hu F, Zhang SZ (2011). Breeding of commercially acceptable allelopathic rice cultivars in China. Pest Managment Science67(9): 1100-1106.
  • Kong CH, Liang WJ, Xu XH, Hu F, Wang P, Jiang Y (2004). Release and activity of allelochemicals from allelopathic rice seedlings. Journal of Agricultural and Food Chemistry 52 (10): 2861-2866.
  • Kruse M, Strandberg M, Strandberg B (2000). Ecological effects of allelopathic plants-A Review. 1999. Ministry of Environment and Energy, National Environmental Research Institute, NERI Technical Report no. 315, Silkeborg, Denmark. pp.67.
  • Lin WX (2010). Effect of self-allelopathy on AOS of Casuarina equisetif olia forst seedling. Fujian Journal Agricultural Sciences 25: 108-113.
  • Lin WX, He HQ, Chen XX, Xiong J, Song BQ, Liang YY, Liang KJ (2005). Use of ISSR molecular marker approach to estimate genetic diversity in rice and barley allelopathy.  Proceedings of the 4th World Congress on Allelopathy, eds. Harper JDI, An M, Wu H & Kent JH, Charles Sturt University, WaggaWagga, NSW, Australia. pp.168-174.
  • Lin WX, He HQ, Guo YC, Liang YY, Chen FY (2001). Rice allelopathy and its physiobiochemical characteristics. Chinese Journal of Applied Ecology12: 871-875.
  • Lin WX, Kim KU, Shin DH(2000). Rice allelopathic potential and its modes of action on Barnyardgrass (Echinochloa crus-galli). Allelopathy Journal7 (2): 215-224.
  • Liu DL, Lovett JV(1993). Biologically active secondary metabolites of barley, 11. Phytotoxicity of barley allelochemicals. Journal of  Chemical Ecology 19: 2231-2244.
  • Mattice J, Lavy T, Skulman B, Dilday R (1996). Searching for allelochemicals in rice that control ducksalad. In: Odofsdotter, M. (Ed.), Workshop on Allelopathy in Rice. International Rice Research Institute, Makati City, Philippines.Pp.81-98.
  • Maver, M.; Miras-Moreno, B.; Lucini, L.; Trevisan, M.; Pii, Y.; Cesco, S.; Mimmo, T. New insights in the allelopathic traits of different barley genotypes: Middle Eastern and Tibetan wild-relative accessions vs. cultivated modern barley. PLoS ONE 2020, 15, e0231976.
  • Miller DA (1996). Allelopathy in forage crop system. Agronomy Journal 88: 854-859.
  • Mwaja VN, Masiunas JB, Westnn LA (1995). Effects of fertility on biomass, phytotoxicity and allelochemical content of cereal rye. Journal of Chemical Ecology 21: 81-97.
  • Nath, S., Datta, A., Das, A., & Adhikari, S. (2024). Metal-Based Drugs in Cancer Therapy. Int. J. Exp. Res. Rev, 37, 159-173.
  • Netzly DH, Riopel JL, Ejeta G, Butler LG (1988). Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of Sorghum (Sorghum bicolor). Weed Science 36: 441-446.
  • Nicollier JF, Pope DF, Thompson AC (1983) Biological activity of dhurrin and other compounds of Johnson grass (Sorghum halepense). Journal of Agricultural and Food Chemistry 31 : 744-748.
  • Niemeyer HM (1988). Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the Gramineae. Phytochemistry 27: 3349-3358.
  • Niemeyer HM (2009). Hydroxamic acids derived from 2-hydroxy-2H-1, 4-benzoxazin-3(4H)-one: key defense chemicals of cereals. Journal of Agricultural and Food Chemistry 57(5):1677-1696. doi: 10.1021/jf8034034
  • Niemeyer HM, Jerez JM (1997). Chromosomal location of genes for hydroxamic acid accumulation in Triticum aestivum L. (wheat) using wheat aneuploids and wheat substitution lines. Heredity 79 : 10-14.
  • Nimbal, CI, Yerkes CN, Weston LA, Weller SC (1996). Herbicidal activity and site of action of the natural product sorgoleone. Pesticide Biochemistry and Physiology, 54 (1996) 73-83.
  • Nomura T, Ishihara A, Yanagita RC (2005). Endo TR &Iwamura H, Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat.  Proceedings of the National Academy of Sciences of the United States of America102: 16490-16495.
  • Oueslati O, Hammouda MB, Ghorbal MH, GazzehME, Kremer RJ (2005). Barley autotoxicity as influenced by varietal and seasonal variation.Journal of Agronomy and Crop Sciences 191: 249-254.
  • Oueslati, O.; Ben-Hammouda, M.; Ghorbal, M.H.; Guezzah, M.; Kremer, R.J. Barley autotoxicity as influenced by varietal and seasonal variation. J. Agron. Crop. Sci. 2005, 191, 249–254.
  • Pérez FJ , Ormenoio-Nunez J (1993).Weed growth interference from temperate cereals: The effect of a hydroxamic-acids-exuding rye (Secale cereale L.) cultivar. Weed Research, 33 (1993) 115-119.
  • Pérez FJ, Ormefio-Nǜǹez J (1991). Difference in hydroxamic acid content in roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.): Possible role in allelopathy. Journal of Chemical Ecology 17 : 1037-1043.
  • Poonpaiboonpipat T, Pangnakorn U, Suvunnamek U, Teerarak M, Charoenying P, Laosinwattana C (2013). Phytotoxic effects of essential oil from Cymbopogon citratus and its physiological mechanisms on barnyardgrass (Echinochloa crus-galli). Industrial  Crops and Products 41: 403-407.
  • Putnam AR (1985). Allelopathic research in agriculture: Past highlights and potential. In The Chemistry of Allelopathy: Biochemical Interactions Among Plants, American Chemical Society Symposium Ed. A C Thompson. Washington DC, USA: American Chemical Society.
  • Putnam AR,Duke WB (1974). Biological suppression of weeds: evidence for allelopathy in accessions of Cucumber.  Science 185 : 370-372.
  • Quader M, Daggard G, Barrow R, Walker S, Sutherland MW (2001). Allelopathy, DIMBOA production and genetic variability in accessions of Triticum speltoides. Journal of Chemical Ecology27 (4):  747-760.
  • Rasmussen JA, Hejl AM, Einhellig FA, Thomas JA (1992). Sorgoleone from root exudate inhibits mitochondrial functions. Journal of Chemical Ecology18 :197-207.
  • Reigosa MJ, Souto XC, Gonzalez L (1999). Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regulation 28 (2): 83-88.
  • Rey GT, Monalie CS (2012). Allelopathic potential of selected grasses (family Poaceae) on the germination of Lettuce seeds (Lactuca sativa). International Journal of Bio-Science and Bio-Technology 4: 27.
  • Rice EL (194). Allelopathy. 2nd Edn.Academic  Publishers, New York . pp.424.
  • Robert JK, Moncef BH (2009). Allelopathic Plants. Barley (Hordeum vulgare L). Allelopathy Journal 24 (2): 225-242.
  • Sánchez-Moreiras AM,  Dela Pena TC,  Reigosa MJ (200).The natural compound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems.Phytochemistry 69(11):2172-9. doi: 10.1016/j.phytochem.2008.05.014.
  • Sar, K., Pal, A., Choudhury, Md. R., Kumar, C. S., Manasa, P., Sarangi, S., Adhikary, N. K., & Nandi, P. (2024). Dynamics of Weed and Productivity in Summer Green Gram (Vigna radiata L.) by Using Different Nitrogen Levels and Weed Control Techniques in South-Eastern Odisha. International Journal of Experimental Research and Review, 44, 91–101. https://doi.org/10.52756/ijerr.2024.v44spl.008
  • Scavo, A.; Rial, C.; Molinillo, J.M.G.; Varela, R.M.; Mauromicale, G.; Macías, F.A. Effect of shading on the sesquiterpene lactone content and phytotoxicity of cultivated cardoon leaf extracts. J. Agric. Food Chem. 2020, 68, 11946–11953.
  • Schreiner O,  Reed H S (1907). The production of deleterious excretions by roots. Bulletin of Torrey Botanical Club34: 279-303.
  • Schulz M, Friebe A, Kuek P, Seipeland M, Schnabl H (1994). Allelopathic effects of living quack grass (Agropyron repens L.): Identification of inhibitory allelochemicals exuded from rhizome borne roots. Angew Bot68: 195-200.
  • Schumaeher WJ, Thill DC, Lee GA (1933). Allelopathic potential of wild oat (Avenafatua) on spring wheat (Triticumaestivum) growth. Journal of  Chemical Ecology 9: 1235-1245.
  • Shekoofa A, Safikhan S, Raper TB, Butler SA (2020). Allelopathic impacts of cover crop species and termination timing on Cotton germination and seedling growth.  Agronomy, 10 (5) 638.doi: 10.3390/agronomy10050638.
  • Sinha, A., Deb, V. K., Datta, A., Yadav, S., Phulkar, A., & Adhikari, S. (2024). Evaluation of structural features of anabolic-androgenic steroids: entanglement for organ-specific toxicity. Steroids, 109518.
  • Sunmonu TO, Van staden J (2014). Phytotoxicity evaluation of six fast-growing tree species in South Africa. South African Journal of Botany 90: 101-106.
  • Suwitchayanon P, Pukclaiand P, Kato-Noguchi H (2013). Allelopathic Activity of Cymbopogonnardus (Poaceae): A Preliminary Study. Journal of Plant Studies 2 (2): 1-6.
  • Teasdale JR, Mohler CL (2000). The quantitative relationship between weed emergence and the physical properties of mulches.  Weed Science 48 (3): 385-392.
  • Tsao R, Romanchus FE, Peterson CJ, Coats JR (2002). Plant growth regulatory effect and insecticidal activity of the extracts of the tree of heaven (Ailanthus altissima L.). BMC Ecology, 2 : 1. doi: 10.1186/1472-6785-2-1
  • Vieites-Álvarez, Y., Otero, P., Prieto, M.A., Simal-Gandara, J., Reigosa, M.J., Sánchez-Moreiras, A.M. and Hussain, M.I. (2023), Testing the role of allelochemicals in different wheat cultivars to sustainably manage weeds. Pest Manag Sci, 79: 2625-2638. https://doi.org/10.1002/ps.7444
  • Wardle DA, Nieholson KS, Ahmed M, Rahman A (1994). Interference effects of the invasive plant Carduus nutans L. against the nitrogen fixation ability of Trifoliumrepens L. Plant Soil 163: 287-297.
  • Weidenhamer JD, Harnett DC,  Romero JT (2009).  Solid-phase root zone extraction (SPRE): a new methodology for measurement of allelochemical dynamics in soil. Plant soil 322: 177-186.
  • Weston LA , Czarnota MA (2001). Activity and persistence of sorgoleone, a long-chain hydro- quinone produced by Sorghum bicolor. Journal of Crop Production 4 : 363-367-.
  • Weston LA, Harmon R, Mueller S (199). Allelopathic potential of Sorghum-sudangrass hybrid (sudex). Journal of Chemical Ecology 15 : 1855-1865.
  • Wiseman, B. R., M. E. Snook, R. L. Wilson & D. J. Isenhour. 1992. Allelochemical content of selected popcorn silks: Effects on growth of corn earworm larvae (Lepidoptera: Noctuidae). J. Econ. Entom. 85: 2500–2504.
  • Wu FZ, Pan K, Ma FM, Wang XD (2004).Effects of ciunamic acid on photosynthesis and cell ultrastructure of cucumber seedlings. Acta Hortic Sin, 31: 183-188.
  • Wu H, An M, Liu DL, Pratley J, Lemerle D (2008). Recent advances in wheat 553 allelopathy, in allelopathy in sustainable agriculture and forestry, eds. R. S. Zeng, A. 554 U. Mallik, and S. M. Luo (Springer New York). Pp.235-254.
  • Wu H, Haig T, Pratley J, Lemerle D,  An M(2002). Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass (Lolium rigidum). Journal of Agricultural Food Chemistry 50 : 4567-4571.
  • Wu H, Haig T, Pratley J, Lemerle D, An M (2001). Allelochemicals in wheat (Triticumaestivum L.): Cultivar difference in the exudation of phenolic acids. Journal of Agricultural Food Chemistry 49 :3742-3745.
  • Wu H, Pratley J, LeMerle D, An  M (2001) Allelochemicals in wheat (Triticum aestivum): production and exudation of 2, 4-dihydro-7-methoxy-1,4-benzoxazin-3-one.  Journal of Chemical Ecology, 27: 1691-1700.
  • Wu H, Pratley J, Lemerle D, An M, Liu DL (2007). Modern genomic approaches to improve allelopathic capability in wheat (Triticumaestivum L.). Allelopathy Journal, 19 :  97-108.
  • Wu H, Pratley J, Lemerle D, Haig (2001). Allelopathy in wheat (Triticum 533 aestivum). Annals of Applied Biology 139: 1-9.
  • Wu H, Pratley J, Ma W,  Haig T (2003). Quantitative trait loci and molecular markers associated with wheat allelopathy. Theory of Applied Genetics 107: 1477-1481. 
  • Xuan, T.D.; Minh, T.N.; Khanh, T.D. Allelopathic momilactones A and B are implied in rice drought and salinity tolerance, not weed resistance. Agron. Sustain. Dev. 2016, 36, 52.
  • Zeng RS, Luo SM, Shi YH, Shi MB,Tu CY (2001).Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agronomy Journal, 93(1): 72-79.
  • Zwain, K. H. Y., I. S. Alsaadawi & H. A Shahata. 1999. Effect of decomposing wheat residues on growth and biological nitrogen fixation of blue green algae. Allelopathy J. 6: 13–21.

check for update

Life as Basic Science: An Overview and Prospects for Future [Volume: 3]

How to Cite
Abhijit Datta, H. Reshmi Singha, Rajat Debnath, Sandipan Das, Anwesha Dey, Bhanumati Sarkar, Folguni Laskar and Suman Adhikari (2024). A review of allelopathic potential of some of the economically important members of the family Poaceae with special reference to rice for weed control and sustainable agriculture. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Jayanta Kumar Das, Dr. Mayur Doke and Dr. Vincent Avecilla (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 3, pp. 20-40. ISBN: 978-81-978955-7-9
DOI: https://doi.org/10.52756/lbsopf.2024.e03.002

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device