The Biological Activity and Synthesis of Orally Active COVID-19 (SARS-CoV-2) Antiviral Drug Molnupiravir
Tanmoy Sahooa,b
aFluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
https://orcid.org/0009-0008-5483-7136
Priyanka Shrivastavac
cHoly Cross School, Durjoynagar, Airport Road, Agartala,799006, Tripura(West), India.
https://orcid.org/0009-0009-5545-6084
Anirban Chandrad
Department of Chemistry, Tripura University, Suryamaninagar, 799022, Tripura(West), India.
https://orcid.org/0009-0009-8943-9530
Swapan Kumar Biswasd
dDepartment of Chemistry, Tripura University, Suryamaninagar, 799022, Tripura(West), India.
https://orcid.org/0000-0002-2757-7702
B. V. Subba Reddya
aFluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
https://orcid.org/0000-0003-0814-583X
Published online: 27th May, 2024
DOI: https://doi.org/10.52756/bhstiid.2024.e01.002
Keywords: SARS-CoV-2, Antiviral, Cytidine, Uridine, D-Ribose Molnupiravir, Ribonucleoside.
Abstract:
In the midst of the COVID-19 pandemic, a multitude of potential drugs have emerged, among them molnupiravir (MK-4482 and EIDD-2801), an innovative oral antiviral designed to combat COVID-19. Currently undergoing final clinical trials, molnupiravir has displayed encouraging results in boosting the replication process of viral RNA mutations in both animal and human subjects. With the urgent demand for its production, it became an urgent need for the society to establish an efficient and feasible synthetic pathway from basic materials. This research delves into the molecular docking analysis of molnupiravir, shedding light on its mechanism of action (MOA) while outlining the most recent synthetic processes. Such insights are poised to benefit various disciplines, including medicinal chemistry, organic chemistry, biochemistry, and pharmacology. Marketed under the brand name Lagevrio, molnupiravir stands out as a simple yet potent orally active antiviral medication. Initially developed for treating influenza, its application has expanded to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has an exceptional potency as the first oral, direct-acting antiviral medication against SARS-CoV-2. This review explores different synthetic strategies/routes employed in the synthesis of molnupiravir, with the aim of facilitating the development of novel routes for its further enhancement.
References:
- Abu-Zaied, M. A.; Elgemeie, G. H.; Mahmoud, N. M. Anti-covid-19 drug analogues: synthesis of novel pyrimidine thioglycosides as antiviral agents against SARS-COV-2 and avian influenza H5N1 viruses. ACS Omega 2021, 6(26), 16890–16904. doi.org/10.1021/acsomega.1c01501.
- Ahlqvist, G. P.; McGeough, C. P.; Senanayake, C.; Armstrong, J. D.; Yadaw, A.; Roy, S.; Ahmad, S.; Snead, D. R.; Jamison, T. F. Progress Toward a Large-Scale Synthesis of Molnupiravir (MK-4482, EIDD-2801) from Cytidine. ACS Omega 2021, 6, 10396-10402. doi.org/10.1021/acsomega.1c00772.
- Ahmed, A.; Ahmed, Q. N.; Mukherjee, D. Conversion of N-acyl amidines to amidoximes: a convenient synthetic approach to molnupiravir (EIDD-2801) from ribose. RSC Adv. 2021, 11, 36143-36147. doi.org/10.1039/D1RA06912H.
- Akkiz, H. Implications of the Novel Mutations in the SARS-CoV-2 Genome for Transmission, Disease Severity and the Vaccine Development. J. Transl. Sci. 2021, 7, 636532. DOI: 10.3389/fmed.2021.636532.
- Aleccia, J. (29 September 2021). “A Daily pill to treat COVID could be just months away”. ABC News. Kaiser Health News. Archived from the original on 29 September 2021.
- Bade, R., Bothe, J. R., Sirota, E., Brunskill, A. P. J.; Newman, J. A., Zhang, Y., Tan, M., Zheng, M., Brito, G., Poirier, M., Fier, P. S., Xu, Y., Ward, M. D., Stone, K., Lee, I. H., Gmitter, A. J., Bernardoni, F., Zompa, M. A., Luo, H. Patel., S. K., Masiuk, T., Mora, J., Ni, T., O., G. A.; Tarabokija, J., Liu, J., Lowinger, M. B.; Mahmood, T., Polymorphs, Particle Size, and a Pandemic: Development of a Scalable Crystallization Process for Molnupiravir , an Antiviral for the Treatment of COVID-19, Org. Process Res. Dev. 2023, 27, 11, 2100–2110. doi.org/10.1021/acs.oprd.3c00268.
- Benkovics, T.; McIntosh, J.; Silverman, S.; Kong, J.; Maligres, P.; Itoh, T.; Yang, H.; Huffman, M.; Verma, D.; Pan, W.; Ho, H.I.; Vroom, J.; Knight, A.; Hurtak, J.; Morris, W.; Strotman, N.; Murphy, G.; Maloney, K.; Fier, P. Evolving to an ideal synthesis of Molnupiravir, an investigational treatment for COVID-19. ChemRxiv. 2020. 10.26434/chemrxiv.13472373.v1.
- Bian, L.; Gao, F.; Zhang, J.; He, Q.; Mao, Q.; Xu, M.; Liang, Z. Effects of SARS-CoV-2, Variants on Vaccine Efficacy and Response Strategies. Expert Rev. Vaccines 2021, 20, 365–373. DOI: 10.1080/14760584.2021.1903879.
- Burke, A. J.; Birmingham, W. R.; Zhuo, Y.; Thorpe, T. W.; da Costa, B. Z.; Crawshaw, R.; Rowles, I.; Finnigan, J. D.; Young, C.; Holgate, G. M.; Muldowney, M. P.; Charnock, S. J.; Lovelock, S. L.; Turner, N. J.; Green, A. P. An Engineered Cytidine Deaminase for Biocatalytic Production of a Key Intermediate of the Covid-19 Antiviral Molnupiravir. J. Am. Chem. Soc. 2022, 144, 3761−3765. DOI: 10.1021/jacs.1c11048
- Chakraborty S, Sutar Y, Prasad K, Rajput J, Hotha S. Expedient Synthesis of Antiviral Drug Molnupiravir from D-Ribose and Cytosine. ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-gd0tn.
- Chavda, V.P.; Balar, P.; Vaghela, D.; Solanki, H.K.; Vaishnav, A.; Hala, V.; Vora, L. Omicron Variant of SARS-CoV-2: An Indian Perspective of Vaccination and Management. Vaccines 2023, 11, 160.Pati, B.; Banerjee, S.“Quinazolines: an illustrated review, J. Adv. Pharm. Edu. Res., 2013, 3, 136–151. doi.org/10.3390/vaccines11010160.
- Chavda, V.P.; Yao, Q.; Vora, L.K.; Apostolopoulos, V.; Patel, C.A.; Bezbaruah, R.; Patel, A.B.; Chen, Z.-S. Fast-Track Development of Vaccines for SARS-CoV-2: The Shots That Saved the World. Front. Immunol. 2022, 13, 961198., WHO Coronavirus (COVID-19) Dashboard, https:// covid19.who.int/, accessed 2023. DOI: 10.3389/fimmu.2022.961198.
- Dey, R.; Nayak, S.; Das, P.; Yadav, S. Short Synthesis of Molnupiravir (EIDD-2801) via a Thionated Uridine Intermediate. ACS Omega 2021, 6, 28366–28372. DOI: 10.1021/acsomega.1c04550.
- Fier, P. S.; Xu, Y.; Poirier, M.; Brito, G.; Zheng, M.; Bade, R.; Sirota, E.; Stone, K.; Tan, L.; Humphrey, G. R.; Chang, D.; Bothe, J.; Zhang, Y.; Bernardoni, F.; Castro, S.; Zompa, M. A.; Taylor, J.; Sirk, K. M.; Diaz-Santana, A.; Diribe, I.; Emerson, K. M.; Krishnamurthi, B.; Zhao, R.; Ward, M.; Xiao, C.; Ouyand, H.; Zhan, J.; Morris, W. J. Development of a Robust Manufacturing Route for Molnupiravir, an Antiviral for the Treatment of COVID-19. Org. Process Res. Dev. 2021, 25, 2806–2815. doi.org/10.1021/acs.oprd.1c00400.
- Fischer, W.A.; Eron, J.J.; Holman, W.; Cohen, M.S.; Fang, L.; Szewczyk, L. J.; Sheahan, T.P.; Baric, R.; Mollan, K.R.; Wolfe, C.R. A Phase 2a Clinical Trial of Molnupiravir in Patients with COVID-19 Shows Accelerated SARS-CoV-2 RNA Clearance and Elimination of Infectious Virus. Sci. Transl. Med. 2022, 14, eabl7430. DOI: 10.1126/scitranslmed.abl7430.
- Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M. A.; COVID-19: drug targets and potential treatments. J. Med. Chem. 2020, 63, 12359–12386. DOI: 10.1021/acs.jmedchem.0c00606.
- Gopalsamuthiram, V.; Williams, C.; Noble, J.; Jamison, T. F.; Gupton, B. F., Snead, D. R.; A. Concise Route to MK-4482 (EIDD-2801) from Cytidine: Part 2. Synlett 2020, 32, 326– 328. DOI:10.1055/a-1275-2848
- Gordon, C.J.; Tchesnokov, E.P.; Schinazi, R.F.; Gotte, M. Molnupiravir promotes € SARS-CoV-2 mutagenesis via the RNA template. J Biol Chem 2021, 297, 100770. DOI: 10.1016/j.jbc.2021.100770.
- Hacker, M.; Messer, W.S.; Bachmann, K.A. “Chapter 10.5: Elimination (Metabolism and Excretion)”. Pharmacology: Principles and Practice. Academic Press. 2009, 216–217. ISBN: 0080919227, 9780080919225
- Halford, B. “An emerging antiviral takes aim at COVID-19”. C&EN. Archived from the original on 2 August 2020.
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. doi: 10.1038/s41579-020-00459-7.
- Hu, T.; Xie, Y.; Liu, Y.; Xue, H.; Zhu, F.; Aisa, H. A.; Shen, J. “One-Pot” Synthesis of Molnupiravir from Cytidine. Org. Process Res. Dev. 2022, 26, 2, 358–364. DOI: 10.1055/s-0041-1738031.
- Jornada, D.H.; Dos Santos Fernandes, G.F.; Chiba, D.E.; De Melo, T.R.F.; Dos Santos, J.L.; Chung, M.C. The Prodrug Approach: A Successful Tool for Improving Drug Solubility. Molecules 2016, 21, 42. DOI: 10.3390/molecules21010042.
- Kabinger, F.; Stiller, C.; Schmitzova, J. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 2021 28, 740e6. DOI: 10.1038/s41594-021-00651-0.
- Kalal, C.; & Charola, S. An alarming public health concern over variability in herbal compositions of marketed immunity booster products during COVID-19: A botanical survey-based study. Int. J. Exp. Res. Rev. 2021, 24, 40-50. https://doi.org/10.52756/ijerr.2021.v24.005
- Khan, Z.; Karataş, Y.; Rahman, H. Anti COVID-19 drugs: need for more clinical evidence and global action. Adv. Ther. 2020, 37(6), 2575–2579. DOI: 10.1007/s13337-021-00684-5.
- Liu, Z.; Yang, J.; Liu, F. New Routes to Antiviral Molnupiravir against SARS-CoV-2 Infection. Chin. J. Org. Chem. 2022, 42, 2988-2993. DOI:10.6023/cjoc202203044
- Markovic, M.; Ben-Shabat, S.; Dahan, A. Prodrugs for Improved Drug Delivery: Lessons Learned from Recently Developed and Marketed Products. Pharmaceutics 2020, 12, 1031. doi.org/10.3390/pharmaceutics12111031.
- Maurya, R.; Mishra, P.; Swaminathan, A.; Ravi, V.; Saifi, S.; Kanakan, A.; Mehta, P.; Devi, P.; Praveen, S.; Budhiraja, S.; SARS-CoV-2 Mutations and COVID-19 Clinical Outcome: Mutation Global Frequency Dynamics and Structural Modulation Hold the Key. Front. Cell. Infect. Microbiol. 2022, 12, 868414. doi: 10.3389/fcimb.2022.868414.
- McIntosh, J. A., Benkovics, T., Silverman, S. M., Huffman, M. A., Kong, J., Maligres, P. E., Itoh, T., Yang, H., Verma, D., Pan, W., Ho, H., Vroom, J., Knight, A. M., Hurtak, J. A., Klapars, A., Fryszkowska, A., Morris, W., Strotman, N. A., Murphy, G. S., Maloney, K. M., and Fier, P. S., Engineered Ribosyl-1-Kinase Enables Concise Synthesis of Molnupiravir, an Antiviral for COVID-19, ACS Cent. Sci. 2021, 7, 12, 1980–1985, doi.org/10.1021/acscentsci.1c00608.
- Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int. J. Stroke 2018, 13, 612–632. DOI: 10.1016/j.jvir.2017.11.026
- Painter, G. R.; Bluemling, G. R.; Natchus, M. G.; Guthrie, D. WO pat., WO2019113462, 2019.
- Painter, G.R.; Bowen, R.A.; Bluemling, G.R.; DeBergh, J.; Edpuganti, V.; Gruddanti, P.R.; Guthrie, D.B.; Hager, M.; Kuiper, D.L.; Lockwood, M.A. The Prophylactic and Therapeutic Activity of a Broadly Active Ribonucleoside Analog in a Murine Model of Intranasal Venezuelan Equine Encephalitis Virus Infection. Antivir. Res. 2019, 171, 104597. DOI: 10.1016/j.antiviral.2019.104597.
- Painter, W.P.; Holman, W.; Bush, J.A.; Almazedi, F.; Malik, H.; Eraut, N.C.J.E.; Morin, M.J.; Szewczyk, L.J.; Painter, G.R. Human Safety, Tolerability, and Pharmacokinetics of Molnupiravir, a Novel Broad-Spectrum Oral Antiviral Agent with Activity Against SARS-CoV-2. Antimicrob. Agents Chemother 2021, 65, e02428-20.
- Pereira, V. R. D.; Bezerra, M. A. M.; Gomez, M. R. B. P.; Martins, G. M.; da Silva, A. D.; de Oliveira, K. T.; de Souza, R. O. M. A.; Amarante, G. W. Concise two-step chemical synthesis of molnupiravir. RSC Adv. 2022, 12, 30120-30124. doi.org/10.1039/D2RA05064A.
- Rautio, J.; Meanwell, N.A.; Di, L.; Hageman, M.J. “The expanding role of prodrugs in contemporary drug design and development”. Nature Reviews. Drug Discovery. 2018, 17 (8): 559–587. doi.org/10.1038/nrd.2018.46.
- Rosangzuala, K., Patlolla, R. R., Shaikh, A., Naik, K. A. P., Raveena, G., Nemali, M., Mudiam M. K. R.*, and Banoth, L., * Streamlined Chemo-Enzymatic Synthesis of Molnupiravir via Lipase Catalyst, ACS Omega 2024, 9, 4, 4423–4428, doi.org/10.1021/acsomega.3c06872.
- Roychoudhury, S.; Das, A.; Jha, N.K.; Kesari, K.K.; Roychoudhury, S.; Jha, S.K.; Kosgi, R.; Choudhury, A.P.; Lukac, N.; Madhu, N.R.; Kumar, D.; & Slama, P. Viral pathogenesis of SARS-CoV-2 infection and male reproductive health. Open Biology (The Royal Society Publishing, UK), 2021, 11, 200347 (Page 1- 11). https://doi.org/10.1098/rsob.200347.
- Sahoo, T.; Reddy, B.V.S. Concise synthesis of antiviral drug, molnupiravir by direct coupling of fully protected D-ribose with cytosine. Tetrahedron Lett. 2022, 97, 153783. doi.org/10.1016/j.tetlet.2022.153783.
- Sezer, A.; HalilovićAlihodžić, M.; Vanwieren, A.R.; Smajkan, A.; Karić, A.; Djedović, H.; Šutković, J. A review on drug repurposing in COVID-19: from antiviral drugs to herbal alternatives. J. Genet. Eng. Biotechnol. 2022, 20, 78. DOI: 10.1186/s43141-022-00353-0.
- Sharma, A.; Ahmed, S.; Kaur, J.; Chawla, R.; Rejeeth, C. Exploring status of emergency drugs and vaccine development in Covid-19 pandemic: an update. VirusDisease 2021, 32, 198–210.
- Steiner, A.; Znidar, D.; Otvös, S. B.; Snead, D. R.; Dallinger, D.; Kappe, C. O. A High-Yielding Synthesis of EIDD-2801 from Uridine. Eur. J. Org. Chem.2020, 6736–6739. DOI:10.26434/chemrxiv.13058486.v1.
- Teli, D.; Balar, P.; Patel, K.; Sharma, A.; Chavda, V.; Vora, L. Molnupiravir: A Versatile Prodrug against SARS-CoV-2 Variants. Metabolites. 2023, 13, 309. DOI: 10.3390/metabo13020309.
- Toots, M.; Yoon, J.J.; Cox, R.M.; Hart, M.; Sticher, Z.M.; Makhsous, N.; Plesker, R.; Barrena, A.H.; Reddy, P.G.; Mitchell, D.G.; Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci. Transl. Med. 2019, 11, eaax5866. DOI: 10.1126/scitranslmed.aax5866
- Toots, M.; Yoon, J.J.; Hart, M.; Natchus, M.G.; Painter, G.R.; Plemper, R.K. Quantitative Efficacy Paradigms of the Influenza Clinical Drug Candidate EIDD-2801 in the Ferret Model. Transl. Res. 2020, 218, 16–28. DOI: 10.1016/j.trsl.2019.12.002.
- Vashist, P.; Vashist, R.; & Tripathi, A. Scientific Assessment and Sorting of Topological Parameters Affecting Time in Recovering from COVID-19. Int. J. Exp. Res. Rev., 2023, 30, 359-365. https://doi.org/10.52756/ijerr.2023.v30.033
- Vasudevan, N.; Ahlqvist, G. P.; McGeough, C. P.; Paymode, D. J.; Cardoso, F. S. P.; Lucas, T.; Dietz, J. P.; Opatz, T.; Jamison, T. F.; Gupton, F. B.; Snead, D. R. A concise route to MK-4482 (EIDD2801) from cytidine. Chem. Commun. 2020, 56, 13363−13364. doi.org/10.1039/D0CC05944G.
- Venkatanarayana, P.; Kolli, D.; Seelama, N. V.; Ramakrishna, D. S. Synthesis of molnupiravir (MK-4482, EIDD-2801): a promising oral drug for the treatment of COVID-19 starting from cytidine. Nucleosides, Nucleotides & Nucleic Acids, 2023, 42, 427–435. DOI: 10.1080/15257770.2022.2153140.
- Wang, Z.; Yang, L. Broad-Spectrum Prodrugs with Anti-SARS-CoV-2 Activities: Strategies, Benefits, and Challenges. J. Med. Virol. 2022, 94, 1373–1390. DOI: 10.1002/jmv.27517.
- Yip, A.J.W.; Low, Z.Y.; Chow, V.T.K.; Lal, S.K. Repurposing Molnupiravir for COVID-19: The Mechanisms of Antiviral Activity. Viruses 2022, 14, 1345. DOI: 10.3390/v14061345. Yoon, J.J.; Toots, M.; Lee, S.; Lee, M.E.; Ludeke, B.; Luczo, J.M.; Ganti, K.; Cox, R.M.; Sticher, Z.M.; Edpuganti, V.; Orally Efficacious Broad-Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses. Antimicrob. Agents Chemother.2018, 62, e00766-18. DOI: 10.1128/AAC.00766-18.
How to Cite
T. Sahoo, P. Shrivastava, A. Chandra, S. K. Biswas and B. V. Subba Reddy (2024). The Biological Activity and Synthesis of Orally Active COVID-19 (SARS-CoV-2) Antiviral Drug Molnupiravir. © International Academic Publishing House (IAPH), Dr. Suman Adhikari, Dr. Manik Bhattacharya and Dr. Ankan Sinha, A Basic Handbook of Science, Technology and Innovation for Inclusive Development [Volume: 1], pp. 13-39. ISBN: 978-81-969828-4-3.
DOI: https://doi.org/10.52756/bhstiid.2024.e01.002
SHARE WITH EVERYONE
Continue reading in any device
Our Other Books –