Revolutionizing Leather Industry Wastewater Treatment: A Game-Changing Approach for Sustainable Environmental Management

Md. Abu Imran Mallick
Department of Zoology, West Bengal State University, Berunanpukuria, North 24 Parganas –700126, West Bengal, India.
OrchideID Icon https://orcid.org/0000-0002-7510-2920

Riya Malakar
Department of Zoology, Rishi Bankim Chandra College, Naihati, West Bengal 743165, India.

Narayan Ghorai
Department of Zoology, West Bengal State University, Berunanpukuria, North 24 Parganas –700126, West Bengal, India.

Aloke Saha
Department of Zoology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
OrchideID Icon https://orcid.org/0000-0001-9985-3481

Pronoy Mukherjee
Department of Zoology, Rishi Bankim Chandra College, Naihati 743165, West Bengal, India.
OrchideID Icon https://orcid.org/0000-0002-4901-0141

Tanmay Sanyal
Department of Zoology, Krishnagar Govt. College, Krishnagar, West Bengal 741101, India.
OrchideID Icon https://orcid.org/0000-0002-0046-1080

Published online: 17th December, 2023

DOI:https://doi.org/10.52756/boesd.2023.e02.027

Keywords: Environment sustainability, leather industry, sustainable development goals, wastewater treatment, 4R strategies.

Abstract:

The substantial volume of wastewater generated by the leather industry, laden with high levels of pollutants, poses a significant environmental threat. Without proper treatment, the discharge of such wastewater could have severe and detrimental effects on the environment. The treatment of wastewater in the leather industry is pivotal for mitigating environmental impacts and represents a cornerstone of sustainable environmental management. The industry not only minimizes its environmental impact but also aligns with and contributes to various sustainable development goals (SDGs). The industry’s commitment to responsible practices is demonstrated by employing diverse methods such as BOD, chlorides, COD, Cr (III), heavy metals, sulfates, and TDS. This includes adsorption, biochemical/biological treatment, chemical precipitation, Electro-coagulation, Fenton oxidation, hybrid processes, ozonation, electro-oxidation, photo-catalytic ozonation, and physical treatment. Moreover, a sustainable approach involves the recovery of valuable substances from the treated wastewater. The solid waste generated, particularly after chromium removal, contains minerals such as phosphorus (P) and potassium (K), which are categorized into 4R (reduce, reuse, recycle, and recover) dimensions. Integrating advanced wastewater treatment methods and resource recovery processes in the leather industry not only helps mitigate environmental impacts but also aligns with broader sustainability objectives, embodying a responsible and forward-thinking approach to wastewater management. Combining effective wastewater treatment in the leather industry is a cornerstone of sustainable environmental management. The emphasis on recovering valuable substances and repurposing solid waste underscores a holistic and responsible approach toward resource utilization. This comprehensive strategy indeed reflects a commitment to environmental stewardship and sustainability in the leather industry.

References:

  • Abdollahi, S., Fallah, N., & Davarpanah, L. (2020). Treatment of real artificial leather manufacturing wastewater containing Dimethylamine (Dma) by photocatalytic method. Chemical Papers, 74(12), 4203–4212. https://doi.org/10.1007/s11696-020-01235-w
  • Adiguzel-Zengin, A. C., Zengin, G., Kilicarislan-Ozkan, C., Dandar, U., & Kilic, E. (2017). Characterization and application of Acacia nilotica L. as an alternative vegetable tanning agent for leather processing. Parlar Scientific Publications, 26(12), 7319–7326. https://hdl.handle.net/11454/16137
  • Anastasi, A., Parato, B., Spina, F., Tigini, V., Prigione, V., & Varese, G. C. (2011). Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnology, 29(1), 38–45.https://doi.org/10.1016/j.nbt.2011.08.006
  • Ashar, A., Bhatti, I. A., Mohsin, M., Yousaf, M., Aziz, H., Gul, A., Hussain, T., & Bhutta, Z. A. (2022). Enhanced solar photocatalytic activity of thermally stable i:zno/glass beads for reduction of cr(Vi) in tannery effluent. Frontiers in Chemistry, 10, 805913. https://doi.org/10.3389/fchem.2022.805913
  • Azom, M. R., Mahmud, K., Yahya, S. M., Sontu, A., & Himon, S. B. (2012). Environmental impact assessment of tanneries: A case study of hazaribag in Bangladesh. International Journal of Environmental Science and Development, 152–156. https://doi.org/10.7763/IJESD.2012.V3.206
  • Bhardwaj, A., Kumar, S., & Singh, D. (2023). Tannery effluent treatment and its environmental impact: A review of current practices and emerging technologies. Water Quality Research Journal, 58(2), 128–152. https://doi.org/10.2166/wqrj.2023.002
  • Chen, X., Xu, L., Ren, Z., Jia, F., & Yu, Y. (2023). Sustainable supply chain management in the leather industry: A systematic literature review. International Journal of Logistics Research and Applications, 26(12), 1663–1703.https://doi.org/10.1080/13675567.2022.2104233
  • Chowdhury, M., Mostafa, M. G., Biswas, T. K., & Saha, A. K. (2013). Treatment of leather industrial effluents by filtration and coagulation processes. Water Resources and Industry, 3, 11–22. https://doi.org/10.1016/j.wri.2013.05.002
  • Christopher, J. G., Kumar, G., Tesema, A. F., Thi, N. B. D., Kobayashi, T., & Xu, K. (2016). Bioremediation for tanning industry: A future perspective for zero emission. In H. E.-D. M. Saleh & R. O. Abdel Rahman (Eds.), Management of Hazardous Wastes. InTech. https://doi.org/10.5772/63809
  • Daigger, G. T. (2009). Evolving urban water and residuals management paradigms: Water reclamation and reuse, decentralization, and resource recovery. Water Environment Research, 81(8), 809–823. https://doi.org/10.2175/106143009X425898
  • Das, A., Saha, A., Sarkar, S., Sadhu, S., Sur, T., Agarwal, S., Mazumdar, S., Bashar, S., Tarafdar, S., & Parvez, S. S. (2022). A multidimensional study of wastewater treatment. Int. J. Exp. Res. Rev., 28, 30-37.https://doi.org/10.52756/ijerr.2022.v28.005
  • Deghles, A., & Kurt, U. (2016). Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process. Chemical Engineering and Processing: Process Intensification, 104, 43–50. https://doi.org/10.1016/j.cep.2016.02.009
  • Dowlath, M. J. H., Karuppannan, S. K., Rajan, P., Mohamed Khalith, S. B., Rajadesingu, S., & Arunachalam, K. D. (2021). Application of advanced technologies in managing wastes produced by leather industries—An approach toward zero waste technology. In Concepts of Advanced Zero Waste Tools (pp. 143–179). Elsevier. https://doi.org/10.1016/B978-0-12-822183-9.00007-6
  • Droste, R. L., & Gehr, R. L. (2019). Theory and practice of water and wastewater treatment. Wiley.
  • Elabbas, S., Ouazzani, N., Mandi, L., Berrekhis, F., Perdicakis, M., Pontvianne, S., Pons, M.-N., Lapicque, F., & Leclerc, J.-P. (2016). Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode. Journal of Hazardous Materials, 319, 69–77. https://doi.org/10.1016/j.jhazmat.2015.12.067
  • Fan, E., Li, L., Wang, Z., Lin, J., Huang, Y., Yao, Y., Chen, R., & Wu, F. (2020). Sustainable recycling technology for li-ion batteries and beyond: Challenges and future prospects. Chemical Reviews, 120(14), 7020–7063. https://doi.org/10.1021/acs.chemrev.9b00535
  • Gadlula, S., Ndlovu, L. N., Ndebele, N. R., & Ncube, L. K. (2019). Membrane technology in tannery wastewater management: A review. Zimbabwe Journal of Science and Technology, 14(1), 57–72. https://journals.nust.ac.zw/index.php/zjst/article/view/147
  • Ghulam, S. T., & Abushammala, H. (2023). Challenges and opportunities in the management of electronic waste and its impact on human health and environment. Sustainability, 15(3), 1837. https://doi.org/10.3390/su15031837
  • Gomes, C. S., Piccin, J. S., & Gutterres, M. (2016). Optimizing adsorption parameters in tannery-dye-containing effluent treatment with leather shaving waste. Process Safety and Environmental Protection, 99, 98–106. https://doi.org/10.1016/j.psep.2015.10.013
  • Gruiz, K. (2015). Environmental toxicology –A general overview. In Engineering tools for environmental risk management (1st ed., p. 70). CRC Press. https://doi.org/10.1201/b18181 (Original work published 2015)
  • Gupta, S., Gupta, S., Dhamija, P., & Bag, S. (2018). Sustainability strategies in the Indian leather industry: An empirical analysis. Benchmarking: An International Journal, 25(3), 797–814. https://doi.org/10.1108/BIJ-06-2017-0140
  • Hansen, É., De Aquim, P. M., & Gutterres, M. (2021). Environmental assessment of water, chemicals and effluents in leather post-tanning process: A review. Environmental Impact Assessment Review, 89, 106597. https://doi.org/10.1016/j.eiar.2021.106597
  • Hasan, H. A., Muhamad, M. H., Ji, B., Nazairi, N. A., Jiat, K. W., Sim, S. I. S. W. A., & Poh, A. F. M. S. (2023). Revolutionizing wastewater treatment with microalgae: Unveiling resource recovery, mechanisms, challenges, and future possibilities. Ecological Engineering, 197, 107117. https://doi.org/10.1016/j.ecoleng.2023.107117
  • Hu, J., Xiao, Z., Zhou, R., Deng, W., Wang, M., & Ma, S. (2011). Ecological utilization of leather tannery waste with circular economy model. Journal of Cleaner Production, 19(2–3), 221–228. https://doi.org/10.1016/j.jclepro.2010.09.018
  • Huang, G., Wang, W., & Liu, G. (2015). Simultaneous chromate reduction and azo dye decolourization by Lactobacillus paracase CL1107 isolated from deep sea sediment. Journal of Environmental Management, 157, 297–302.https://doi.org/10.1016/j.jenvman.2015.04.031
  • Islam, B. I., Musa, A. E., Ibrahim, E. H., Sharafa, S. A., & Elfaki, B. M. (2014). Evaluation and characterization of tannery wastewater. 3(3), 141–150. https://www.academia.edu/7223953/Evaluation_and_Characterization_of_Tannery_Wastewater
  • Jahan, M., Akhtar, N., Khan, N., Roy, C., Islam, R., & Nurunnabi, M. (2015). Characterization of tannery wastewater and its treatment by aquatic macrophytes and algae. Bangladesh Journal of Scientific and Industrial Research, 49(4), 233–242. https://doi.org/10.3329/bjsir.v49i4.22626
  • Jones, M., Gandia, A., John, S., & Bismarck, A. (2020). Leather-like material biofabrication using fungi. Nature Sustainability, 4(1), 9–16. https://doi.org/10.1038/s41893-020-00606-1
  • Kanagaraj, J., Panda, R. C., & M., V. K. (2020). Trends and advancements in sustainable leather processing: Future directions and challenges—A review. Journal of Environmental Chemical Engineering, 8(5), 104379. https://doi.org/10.1016/j.jece.2020.104379
  • Kanagaraj, J., Senthilvelan, T., Panda, R. C., & Kavitha, S. (2015). Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: A comprehensive review. Journal of Cleaner Production, 89, 1–17. https://doi.org/10.1016/j.jclepro.2014.11.013
  • Karuppiah, K., Sankaranarayanan, B., Ali, S. M., Jabbour, C. J. C., & Bhalaji, R. K. A. (2021). Inhibitors to circular economy practices in the leather industry using an integrated approach: Implications for sustainable development goals in emerging economies. Sustainable Production and Consumption, 27, 1554–1568. https://doi.org/10.1016/j.spc.2021.03.015
  • Kowalik-Klimczak, A., & Gierycz, P. (2014). Application of pressure membrane processes for the minimization of the noxiousness of chromium tannery wastewater. Problemy Eksploatacji, (1), 71–79.
  • Kurniawan, T. A., Chan, G. Y. S., Lo, W.-H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1–2), 83–98. https://doi.org/10.1016/j.cej.2006.01.015
  • Leather Dictionary. (2021). Leather Industry. https://www.leather-dictionary.com/index.php/Leather
  • Lim, M. M. L., Jørgensen, P. S., & Wyborn, C. A. (2018). Reframing the sustainable development goals to achieve sustainable development in the Anthropocene—A systems approach. Ecology and Society, 23(3). https://www.jstor.org/stable/26799145
  • Liu, B., Chen, B., Ling, J., Matchinski, E. J., Dong, G., Ye, X., Wu, F., Shen, W., Liu, L., Lee, K., Isaacman, L., Potter, S., Hynes, B., & Zhang, B. (2022). Development of advanced oil/water separation technologies to enhance the effectiveness of mechanical oil recovery operations at sea: Potential and challenges. Journal of Hazardous Materials, 437, 129340. https://doi.org/10.1016/j.jhazmat.2022.129340
  • Lofrano, G., Meriç, S., Zengin, G. E., & Orhon, D. (2013). Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Science of The Total Environment, 461–462, 265–281. https://doi.org/10.1016/j.scitotenv.2013.05.004
  • Mandal, T., Dasgupta, D., Mandal, S., & Datta, S. (2010). Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process. Journal of Hazardous Materials, 180(1–3), 204–211. https://doi.org/10.1016/j.jhazmat.2010.04.014
  • Masood, F., & Malik, A. (2014). Environmental concerns of the tanning industry. In A. Malik, E. Grohmann, & R. Akhtar (Eds.), Environmental Deterioration and Human Health (pp. 39–53). Springer Netherlands. https://doi.org/10.1007/978-94-007-7890-0_3
  • Mella, B., Glanert, A. C. C., & Gutterres, M. (2013). Removal of chromium from tanning wastewater by chemical precipitation and electrocoagulation. In XXXII Congress of the IULTCS, Istanbul.
  • Mukherjee, P., Saha, A., Sen, K., Erfani, H., Madhu, N. R., & Sanyal, T. (2022). Conservation and prospects of Indian lacustrine fisheries to reach the sustainable developmental goals (SDG 17). In N. R. Madhu (Ed.), A Basic Overview of Environment and Sustainable Development (1st ed., pp. 98–116). International Academic Publishing House (IAPH). https://doi.org/10.52756/boesd.2022.e01.010
  • Mwondu, J. (2017). Training manual on improved production and preservation techniques of hides and skins. URL: researchgate. net/publication/324844427.
  • Natarajan, T. S., Natarajan, K., Bajaj, H. C., & Tayade, R. J. (2013). Study on identification of leather industry wastewater constituents and its photocatalytic treatment. International Journal of Environmental Science and Technology, 10(4), 855–864. https://doi.org/10.1007/s13762-013-0200-9
  • Obotey Ezugbe, E., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: A review. Membranes, 10(5), 89. https://doi.org/10.3390/membranes10050089
  • Omoloso, O., Mortimer, K., Wise, W. R., & Jraisat, L. (2021). Sustainability research in the leather industry: A critical review of progress and opportunities for future research. Journal of Cleaner Production, 285, 125441.https://doi.org/10.1016/j.jclepro.2020.125441
  • Pal, M., Malhotra, M., Mandal, M. K., Paine, T. K., & Pal, P. (2020). Recycling of wastewater from tannery industry through membrane-integrated hybrid treatment using a novel graphene oxide nanocomposite. Journal of Water Process Engineering, 36, 101324. https://doi.org/10.1016/j.jwpe.2020.101324
  • Rezende Moreira, V., Abner Rocha Lebron, Y., & Cristina Santos Amaral, M. (2022). Enhancing industries exploitation: Integrated and hybrid membrane separation processes applied to industrial effluents beyond the treatment for disposal. Chemical Engineering Journal, 430, 133006. https://doi.org/10.1016/j.cej.2021.133006
  • Rhys-Taylor, A. (2018). Food and multicultural: A sensory ethnography of East London (Paperback edition, first published). Bloomsbury Academic.
  • Ricky, R., Shanthakumar, S., Ganapathy, G. P., & Chiampo, F. (2022). Zero liquid discharge system for the tannery industry—An overview of sustainable approaches. Recycling, 7(3), 31. https://doi.org/10.3390/recycling7030031
  • Roberts, T. (2014). When bigger is better: A critique of the Herfindahl-hirschman index’s use to evaluate mergers in network industries. Pace Law Review, 34(2), 894. https://doi.org/10.58948/2331-3528.1863
  • Saha, A. (2023). Circular economy strategies for sustainable waste management in the food industry. Journal of Recycling Economy & Sustainability Policy, 2(2), 1–16. https://respjournal.com/index.php/pub/article/view/17
  • Saha, A., Mukherjee, P., Roy, K., Sen, K., & Sanyal, T. (2022). A review on phyto-remediation by aquatic macrophytes: A natural promising tool for sustainable management of ecosystem. Int. J. Exp. Res. Rev., 27, 9–31. https://doi.org/10.52756/ijerr.2022.v27.002
  • Saxena, G., Chandra, R., & Bharagava, R. N. (2016). Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. In P. De Voogt (Ed.), Reviews of Environmental Contamination and Toxicology, 240, 31–69. Springer International Publishing. https://doi.org/10.1007/398_2015_5009
  • Smith, L., & Ball, P. (2012). Steps towards sustainable manufacturing through modelling material, energy and waste flows. International Journal of Production Economics, 140(1), 227–238. https://doi.org/10.1016/j.ijpe.2012.01.036
  • Srinivasan, S. V., Rema, T., Chitra, K., Sri Balakameswari, K., Suthanthararajan, R., Uma Maheswari, B., Ravindranath, E., & Rajamani, S. (2009). Decolourisation of leather dye by ozonation. Desalination, 235(1–3), 88–92.https://doi.org/10.1016/j.desal.2007.07.032
  • Stoller, M., Sacco, O., Sannino, D., & Chianese, A. (2013). Successful integration of membrane technologies in a conventional purification process of tannery wastewater streams. Membranes, 3(3), 126–135. https://doi.org/10.3390/membranes3030126
  • Sugasini, A., & Rajagopal, K. (2015). Characterization of physicochemical parameters and heavy metal analysis of tannery effluent. International Journal of Current Microbiology and Applied Sciences4(9), 349-359.
  • Sundar, V. J., Ramesh, R., Rao, P. S., Saravanan, P., Sridharnath, B., & Muralidharan, C. (2001). Water management in leather industry. Journal of Scientific & Industrial Research, 60(6), 443-450.
  • Sundarapandiyan, S., Raju, G. B., Chandrasekaran, B., & Saravanan, P. (2018). Removal of organic materials from tannery wastewater containing ammonia for reuse using electro-oxidation. Environmental Engineering and Management Journal, 17(9), 2157–2164. https://doi.org/10.30638/eemj.2018.214
  • Thakur, D., Jha, A., Chattopadhyay, S., & Chakraborty, S. (2021). A review on opportunities and challenges of nitrogen removal from wastewater using microalgae. Int. J. Exp. Res. Rev., 26, 141-157.
  • https://doi.org/10.52756/ijerr.2021.v26.011
  • UN Comtrade Database. (2022). United Nations, UN Comtrade Database, found at: Download trade data / UN Comtrade: International Trade Statistics.
  • UNESCO. (2021). The United Nations World Water Development Report 2021: Valuing Water. Water Politics 206.
  • UNIDO. (2000). The Scope for Decreasing Pollution Load in Leather Processing (US/RAS/92/120/11-51). United Nations Industrial Development Organization – Regional Programme for Pollution Control in the Tanning Industry in South-East Asia.
  • Wang, D., Ye, Y., Liu, H., Ma, H., & Zhang, W. (2018). Effect of alkaline precipitation on Cr species of Cr(Iii)-bearing complexes typically used in the tannery industry. Chemosphere, 193, 42–49. https://doi.org/10.1016/j.chemosphere.2017.11.006
  • Wang, Y., Zeng, Y., Zhou, J., Zhang, W., Liao, X., & Shi, B. (2016). An integrated cleaner beamhouse process for minimization of nitrogen pollution in leather manufacture. Journal of Cleaner Production, 112, 2–8. https://doi.org/10.1016/j.jclepro.2015.07.060
  • Yong, J. Y., Klemeš, J. J., Varbanov, P. S., & Huisingh, D. (2016). Cleaner energy for cleaner production: Modelling, simulation, optimisation and waste management. Journal of Cleaner Production, 111, 1–16. https://doi.org/10.1016/j.jclepro.2015.10.062
  • Yusuf, M. A., & Agustina, L. (2023). The potential application of photocatalytic processes in the processing of wastewater in the leather industry: A Review. IOP Conference Series: Earth and Environmental Science, 1253(1), 012025. https://doi.org/10.1088/1755-1315/1253/1/012025
  • Zahoor, I., & Mushtaq, A. (2023). Water pollution from agricultural activities: A critical global review. Int. J. Chem. Biochem. Sci.23(1), 164-176.
  • Zhao, C., & Chen, W. (2019). A review for tannery wastewater treatment: Some thoughts under stricter discharge requirements. Environmental Science and Pollution Research, 26(25), 26102–26111. https://doi.org/10.1007/s11356-019-05699-6
  • Zimon, D., Tyan, J., & Sroufe, R. (2020). Drivers of sustainable supply chain management: Practices to alignment with un sustainable development goals. International Journal for Quality Research, 14(1), 219–236. https://doi.org/10.24874/IJQR14.01-14

check for update

A Basic Overview of Environment and Sustainable Development [Volume: 2]
A Basic Overview of Environment and Sustainable Development [Volume: 2]

How to Cite
Md. Abu Imran Mallick, Riya Malakar, Narayan Ghorai, Aloke Saha, Pronoy Mukherjee, Tanmay Sanyal (2023). Revolutionizing Leather Industry Wastewater Treatment: A Game-Changing Approach for Sustainable Environmental Management. © International Academic Publishing House (IAPH), Shubhadeep Roychoudhury, Tanmay Sanyal, Koushik Sen & Sudipa Mukherjee Sanyal (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 2], pp. 390-407. ISBN: 978-81-962683-8-1.
DOI: https://doi.org/10.52756/boesd.2023.e02.027

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device

Our Other Books –