Environmental Hazards Associated with the Disposal of Municipal Solid Waste

Shouvik Das
Department of Civil and Environmental Engineering, BIT, Mesra, Jharkhand – 835215, India
OrchideID Icon https://orcid.org/0009-0001-1670-8420

Anushree Pal
Department of Civil and Environmental Engineering, BIT, Mesra, Jharkhand – 835215, India
OrchideID Icon https://orcid.org/0009-0009-2414-0765

Shaheen Hasan Dawan
Department of Civil and Environmental Engineering, BIT, Mesra, Jharkhand – 835215, India
OrchideID Icon https://orcid.org/0009-0003-8430-8300

Sukalyan Chakraborty
Department of Civil and Environmental Engineering, BIT, Mesra, Jharkhand – 835215, India
OrchideID Icon https://orcid.org/0000-0002-6702-7238

Tanushree Bhattacharya
Department of Civil and Environmental Engineering, BIT, Mesra, Jharkhand – 835215, India
OrchideID Icon https://orcid.org/0000-0003-3547-2529

Published online:30th November, 2024

DOI: https://doi.org/10.52756/lbsopf.2024.e03.004

Keywords: Anaerobic Digestion, Microplastics, Municipal Solid Waste (MSW), Sustainable Practices, Waste Management

Abstract:

Increasing urbanization, industrialization, and population growth result in increasing amounts of municipal solid waste (MSW), which proved to be one of the major threats to the environment and public health. This type of waste mainly comprises plastics, metals, organics, electronic waste, etc. As MSW contains various components such as microplastics, heavy metals, inorganic salts, and volatile organic compounds (VOCs), it is regarded as a mixed source of various contaminants. The mismanagement of these wastes subsequently causes increased pollution around an area, degrading air, water, and land. The heavy metals that accumulate in the ecosystem, which endanger humans and biota, are lead, cadmium, and mercury. These are often derived from industrial and electronic waste. Such nutrients above cause eutrophication and disrupt ecosystems with plastics and microplastic carriers of pathogenic bacteria and antibiotic resistance genes. MSW is well known for having VOCs and POPs about air pollution and public health, bioaccumulating along food chains. It is crucial to sink waste and to rehabilitate waste management. Recent approaches like recycling, energy recovery, and circular economy models emphasize cutting waste, recovering resources, and pollution prevention. Waste can also be tackled with energy production by incineration and anaerobic digestion methods. The ideals of sustainable development, which are concerned with environmental integrity, health risk reduction, and responsible consumption of resources, cohere with international efforts to shift sustainable practice. This synthesis stresses the urgent need for integrated approaches in the regulation-technical innovation-community combination to address the multifaceted challenges of municipal solid waste management and the welfare of people and the environment.

References:

  • Abdel-Shafy, H. I., Ibrahim, A. M., Al-Sulaiman, A. M., & Okasha, R. A. (2024). Landfill leachate: Sources, nature, organic composition, and treatment: An environmental overview. Ain Shams Engineering Journal15(1), 102293.
    https://doi.org/10.1016/j.asej.2023.102293.
  • Abubakar, I. R., Maniruzzaman, K. M., Dano, U. L., AlShihri, F. S., AlShammari, M. S., Ahmed, S. M. S., … & Alrawaf, T. I. (2022). Environmental sustainability impacts of solid waste management practices in the global South. International journal of environmental Research and Public Health19(19), 12717.  https://doi.org/10.3390/ijerph191912717
    Aendo, P., Netvichian, R., Thiendedsakul, P., Khaodhiar, S., & Tulayakul, P. (2022). Carcinogenic risk of Pb, Cd, Ni, and Cr and critical ecological risk of Cd and Cu in soil and groundwater around the municipal solid waste open dump in central Thailand. Journal of Environmental and Public Health2022(1), 3062215.
    https://doi.org/10.1155/2022/3062215
  • An, E. U. (2015). action plan for the Circular Economy. Communication from the Commission to the European Parliament, the Council, the European economic and social committee and the Committee of the regions closing the loop. Brussels2.
  • Anand, U., Reddy, B., Singh, V. K., Singh, A. K., Kesari, K. K., Tripathi, P., … & Simal-Gandara, J. (2021). Potential environmental and human health risks caused by antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs) and emerging contaminants (ECs) from municipal solid waste (MSW) landfill. Antibiotics10(4), 374.
    https://doi.org/10.3390/antibiotics10040374
  • Ashfaq, A., Khan, Z. I., & Ahmad, K. (2022). Assessing the health risk of cadmium to the local population through consumption of contaminated vegetables grown in municipal solid waste–amended soil. Environmental Monitoring and Assessment194(7), 468.  https://doi.org/10.1007/s10661-022-10104-w 
  • Ayub, S., & Khan, A. H. (2011). Landfill practice in India: A review.
    Bhat, R. A., Singh, D. V., Qadri, H., Dar, G. H., Dervash, M. A., Bhat, S. A., … & Yousaf, B. (2022). Vulnerability of municipal solid waste: An emerging threat to aquatic ecosystems. Chemosphere287, 132223.
    https://doi.org/10.1016/j.chemosphere.2021.132223
  • Bu, Q., Cao, H., He, X., Zhang, H., & Yu, G. (2020). Is disposal of unused pharmaceuticals as municipal solid waste by landfilling a good option? A case study in China. Bulletin of Environmental Contamination and Toxicology105, 784-789.
    https://doi.org/10.1007/s00128-020-03006-5
    Chattopadhyay, S., Dutta, A., & Ray, S. (2009). Municipal solid waste management in Kolkata, India–A review. Waste Management29(4), 1449-1458.
    https://doi.org/10.1016/j.wasman.2008.08.030.
  • Chavan, D., Lakshmikanthan, P., Mondal, P., Kumar, S., & Kumar, R. (2019). Determination of ignition temperature of municipal solid waste for understanding surface and sub-surface landfill fire. Waste Management97, 123-130.
    https://doi.org/10.1016/j.wasman.2019.08.002.
    Chen, Y., Guo, R., Li, Y. C., Liu, H., & Zhan, T. L. (2016). A degradation model for high kitchen waste content municipal solid waste. Waste Management58, 376-385.
    https://doi.org/10.1016/j.wasman.2016.09.005.
    Clancy, T. M., Hayes, K. F., & Raskin, L. (2013). Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water. Environmental Science & Technology47(19), 10799-10812. https://doi.org/10.1021/es401749b
  • Costa, A. M., Alfaia, R. G. D. S. M., & Campos, J. C. (2019). Landfill leachate treatment in Brazil–An overview. Journal of Environmental Management232, 110-116.
    https://doi.org/10.1016/j.jenvman.2018.11.006.
  • Dahlén, L., & Lagerkvist, A. (2010). Pay as you throw: Strengths and weaknesses of weight-based billing in household waste collection systems in Sweden. Waste Management, 30(1), 23–31. https://doi.org/10.1016/j.wasman.2009.09.022
  • Das, A., Saha, A., Sarkar, S., Sadhu, S., Sur, T., Agarwal, S., Mazumdar, S., Bashar, S., Tarafdar, S., & Parvez, S. S. (2022). A multidimensional study of wastewater treatment. Int. J. Exp. Res. Rev.28, 30-37. https://doi.org/10.52756/ijerr.2022.v28.005
  • de Titto, E., & Savino, A. (2024). Human Health Impact of Municipal Solid Waste Mismanagement: A Review. Advances in Environmental and Engineering Research5(2), 1-37.  https://doi.org/10.21926/aeer.2402014
  • EP, 2021. Waste management in the EU: infographic with facts and figures. https://www.europarl.europa.eu/news/en/headlines/society/20180328STO00751/eu-waste -management-infographic-with-facts-and-figures.
  • Erfani, H., Swetanshu., Singh, P., Madhu, N.R., & Jadoun, S. (2023). Evaluation of the performance of the compost plant for optimal operational evaluation. Environ Monit Assess, 195, 1271. https://doi.org/10.1007/s10661-023-11810-9 
  •  Feng, S. J., Zheng, Q. T., & Chen, H. X. (2017). Unsaturated flow parameters of municipal solid waste. Waste Management63, 107-121.
    https://doi.org/10.1016/j.wasman.2017.01.025.
  • Gour, A. A., & Singh, S. K. (2023). Solid waste management in India: a state-of-the-art review. Environmental Engineering Research28(4) 220249.
    https://doi.org/10.4491/eer.2022.249.
    Han, J., He, S., Shao, W., Wang, C., Qiao, L., Zhang, J., & Yang, L. (2023). Municipal solid waste, an overlooked route of transmission for the severe acute respiratory syndrome coronavirus 2: a review. Environmental Chemistry Letters21(1), 81-95.
    https://doi.org/10.1007/s10311-022-01512-y.
  • Hickle, G. T. (2014). An examination of governance within extended producer responsibility policy regimes in North America. Resources, Conservation and Recycling, 92, 55–65. https://doi.org/10.1016/j.resconrec.2014.08.007
  • Hobson, K., Holmes, H., Welch, D., Wheeler, K., & Wieser, H. (2021). Consumption Work in the circular economy: A research agenda. Journal of Cleaner Production321, 128969. https://doi.org/10.1016/j.jclepro.2021.128969.
  • Hoornweg D., & Bhada-Tata P., What a waste: A global review of solid waste management, The World Bank, 2012.
    Hoornweg, D., Bhada-Tata, P., & Kennedy, C. (2013). Environment: Waste production must peak this century. Nature502(7473), 615-617. https://doi.org/10.1038/502615a.
  • Jaafarzadeh, N., & Talepour, N. (2024). Microplastics as carriers of antibiotic resistance genes and pathogens in municipal solid waste (MSW) landfill leachate and soil: a review. Journal of Environmental Health Science and Engineering22(1), 1-12.
    https://doi.org/10.1007/s40201-023-00879-6
  • Jalali, M., & Arfania, H. (2011). Distribution and fractionation of cadmium, copper, lead, nickel, and zinc in a calcareous sandy soil receiving municipal solid waste. Environmental Monitoring and Assessment173, 241-250. https://doi.org/10.1007/s10661-010-1384-9
  • Kaur, H., & Kaur, P. (2024). Factors Determining Household Waste Segregation Behaviour: An Indian Case Study. International Journal of Experimental Research and Review, 41(Spl Vol), 83-95. https://doi.org/10.52756/ijerr.2024.v41spl.007
  • Karim, M., & Corazzini, B. (2019). The current status of MSW disposal and energy production: A brief review of waste incineration. MOJ Ecology & Environmental Sciences, 4(1). https://doi.org/10.15406/mojes.2019.04.00129
  • Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications.
  • Khan, S., Anjum, R., Raza, S. T., Ahmed Bazai, N., & Ihtisham, M. (2022). Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere, 288, 132403. https://doi.org/10.1016/j.chemosphere.2021.132403
  • Khan, S., Anjum, R., Raza, S. T., Bazai, N. A., & Ihtisham, M. (2022). Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere288, 132403.
    https://doi.org/10.1016/j.chemosphere.2021.132403.
  • Kim, H., Purev, O., Cho, K., Choi, N., Lee, J., & Yoon, S. (2022). Removal of Inorganic Salts in Municipal Solid Waste Incineration Fly Ash Using a Washing Ejector and Its Application for CO2 Capture. International Journal of Environmental Research and Public Health19(4), 2306.  https://doi.org/10.3390/ijerph19042306
  • Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling127, 221-232.
    https://doi.org/10.1016/j.resconrec.2017.09.005.
  • Korhonen, J., Nuur, C., Feldmann, A., & Birkie, S. E. (2018). Circular economy as an essentially contested concept. Journal of Cleaner Production175, 544-552.
    https://doi.org/10.1016/j.jclepro.2017.12.111.
  • Kumar, A., & Samadder, S. R. (2023). Development of lower heating value prediction models and estimation of energy recovery potential of municipal solid waste and RDF incineration. Energy274, 127273. https://doi.org/10.1016/j.energy.2023.127273.
  • Kurniawan, T. A., Liang, X., O’Callaghan, E., Goh, H., Othman, M. H. D., Avtar, R., & Kusworo, T. D. (2022). Transformation of solid waste management in China: Moving towards sustainability through digitalization-based circular economy. Sustainability14(4), 2374. https://doi.org/10.3390/su14042374.
  • Langdon, K. A., Chandra, A., Bowles, K., Symons, A., Pablo, F., & Osborne, K. (2019). A preliminary ecological and human health risk assessment for organic contaminants in composted municipal solid waste generated in New South Wales, Australia. Waste Management100, 199-207.  https://doi.org/10.1016/j.wasman.2019.09.001
  • Lino, F. A., Ismail, K. A., & Castañeda-Ayarza, J. A. (2023). Municipal solid waste treatment in Brazil: A comprehensive review. Energy Nexus, 100232.
    https://doi.org/10.1016/j.nexus.2023.100232.
  • Maalouf, A., & Mavropoulos, A. (2023). Re-assessing global municipal solid waste generation. Waste Management & Research41(4), 936-947.
    https://doi.org/10.1177/0734242X221074116
  • Madhu, N.R., Sarkar, B., Slama, P., Jha, N.K., Ghorai, S.K., Jana, S.K., Govindasamy, K., Massanyi, P., Lukac, N., Kumar, D., Kalita, J.C., Kesari, K.K., & Roychoudhury, S. (2022). Effect of Environmental Stressors, Xenobiotics, and Oxidative Stress on Male Reproductive and Sexual Health.  © The Author(s), under exclusive license to Springer Nature Switzerland AG 2022, S. Roychoudhury, K. K. Kesari (eds.), Oxidative Stress and Toxicity in Reproductive Biology and Medicine. Advances in Experimental Medicine and Biology, 1391, 33-58. https://doi.org/10.1007/978-3-031-12966-7_3
  • Majumdar, D., & Srivastava, A. (2012). Volatile organic compound emissions from municipal solid waste disposal sites: A case study of Mumbai, India. Journal of the Air & Waste Management Association62(4), 398-407.  https://doi.org/10.1080/10473289.2012.655405
  • Meena, M. D., Yadav, R. K., Narjary, B., Yadav, G., Jat, H. S., Sheoran, P., … & Moharana, P. C. (2019). Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review. Waste Management84, 38-53.
    https://doi.org/10.1016/j.wasman.2018.11.020
  • Mor, S., & Ravindra, K. (2023). Municipal solid waste landfills in lower-and middle-income countries: Environmental impacts, challenges and sustainable management practices. Process Safety and Environmental Protection174, 510-530. https://doi.org/10.1016/j.psep.2023.04.014.
  • Morlok, J., Schoenberger, H., Galvez-Martos, J.-L., & Zeschmar-Lahl, B. (2016). The Impact of Pay-As-You-Throw Schemes in the Management of Municipal Solid Waste: The Case of the County of Aschaffenburg, Germany. https://doi.org/10.20944/preprints201611.0025.v1
  • Nanda, S., & Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters19(2), 1433-1456.
    https://doi.org/10.1007/s10311-020-01100-y.
  • Nanda, S., & Berruti, F. (2021). Municipal solid waste management and landfilling technologies: A review. Environmental Chemistry Letters, 19(2), 1433–1456.
    https://doi.org/10.1007/s10311-020-01100-y
  • Nie, E., Zheng, G., Shao, Z., Yang, J., & Chen, T. (2018). Emission characteristics and health risk assessment of volatile organic compounds produced during municipal solid waste composting. Waste Management79, 188-195.
    https://doi.org/10.1016/j.wasman.2018.07.024
  • Norouzi, O., & Dutta, A. (2022). The current status and future potential of biogas production from Canada’s organic fraction municipal solid waste. Energies15(2), 475.
    https://doi.org/10.3390/en15020475.
  • Pekdogan, T., Yildizhan, H., & Ameen, A. (2024). Unveiling the air quality impacts of municipal solid waste disposal: An integrative study of on-site measurements and community perceptions. Atmosphere15(4), 410.  https://doi.org/10.3390/atmos15040410
  • Peng, X., Jiang, Y., Chen, Z., Osman, A. I., Farghali, M., Rooney, D. W., & Yap, P. S. (2023). Recycling municipal, agricultural and industrial waste into energy, fertilizers, food, and construction materials, and economic feasibility: a review. Environmental Chemistry Letters21(2), 765-801. https://doi.org/10.1007/s10311-022-01551-5.
  • R4R_online_tool_starting_guide.pdf. (n.d.). Retrieved November 27, 2024, from https://www.acrplus.org/media/origin/images/project/R4R/R4R_online_tool_starting_guide.pdf
  • Ren, Y., Zhang, Z., & Huang, M. (2022). A review on settlement models of municipal solid waste landfills. Waste Management149, 79-95. https://doi.org/10.1016/j.wasman.2022.06.019.
  • Sharholy, M., Ahmad, K., Mahmood, G., & Trivedi, R. C. (2008). Municipal solid waste management in Indian cities – A review. Waste Management, 28(2), 459–467.
    https://doi.org/10.1016/j.wasman.2007.02.008
  • Sharma, K. D., & Jain, S. (2019). Overview of Municipal Solid Waste Generation, Composition, and Management in India. Journal of Environmental Engineering, 145(3), 04018143. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001490
  • Sharma, P., Dutta, D., Udayan, A., Nadda, A. K., Lam, S. S., & Kumar, S. (2022). Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. Environmental Pollution305, 119248.
    https://doi.org/10.1016/j.envpol.2022.119248
  • Silvetti, M., Garau, G., Demurtas, D., Marceddu, S., Deiana, S., & Castaldi, P. (2017). Influence of lead in the sorption of arsenate by municipal solid waste composts: metal (loid) retention, desorption and phytotoxicity. Bioresource Technology225, 90-98.
    https://doi.org/10.1016/j.biortech.2016.11.057
  • Singh, A. D., Upadhyay, A., Shrivastava, S., & Vivekanand, V. (2020). Life-cycle assessment of sewage sludge-based large-scale biogas plant. Bioresource Technology309, 123373. https://doi.org/10.1016/j.biortech.2020.123373.
  • Statista (2023). https://www.statista.com/topics/4983/waste-generation- worldwide/#topicOverview.
  • Sultana, M., Jahiruddin, M., Islam, M. R., Rahman, M. M., Abedin, M. A., & Solaiman, Z. M. (2021). Nutrient enriched municipal solid waste compost increases yield, nutrient content and balance in rice. Sustainability13(3), 1047.  https://doi.org/10.3390/su13031047
  • Sun, W., Wang, X., DeCarolis, J. F., & Barlaz, M. A. (2019). Evaluation of optimal model parameters for prediction of methane generation from selected US landfills. Waste Management91, 120-127. https://doi.org/10.1016/j.wasman.2019.05.004.
  • Tamboli, S., Imam, A., Mishra, U., Kumar, K., Mishra, S., Ray, M., Kumar, P., & Yadav, N. (2024). A Research on Fresh and Hardened Concrete Residences with Partial Replacement of Recycled Coarse Aggregates Obtained from Demolition and Construction Waste. International Journal of Experimental Research and Review42, 343-350. https://doi.org/10.52756/ijerr.2024.v42.030
  • Tucker, E. L., Chickering, G. W., Spreadbury, C. J., Laux, S. J., & Townsend, T. G. (2020). A componential approach for evaluating the sources of trace metals in municipal solid waste. Chemosphere260, 127524.
    https://doi.org/10.1016/j.chemosphere.2020.127524
  • Tumolo, M., Ancona, V., De Paola, D., Losacco, D., Campanale, C., Massarelli, C., & Uricchio, V. F. (2020). Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. International Journal of Environmental Research and Public Health17(15), 5438. https://doi.org/10.3390/ijerph17155438
  • United Nations Department of Economic and Social Affairs (UN DESA) (2018) https:// www. un. org/development/ desa/ en/ news/ population/2018-revision-ofworld-urbanization-prospects.html. Last accessed 18 December 18.
  • Upadhyay, K., & Bajpai, S. (2021). Microplastics in Landfills: A Comprehensive Review on Occurrence, Characteristics and Pathways to the Aquatic Environment. Nature Environment & Pollution Technology20.
    https://doi.org/10.46488/NEPT.2021.v20i05.009
  • US EPA, O. (2017, August 31). The United States Experience with Economic Incentives for Protecting the Environment (2001) [Reports and Assessments]. https://www.epa.gov/environmental-economics/united-states-experience-economic-incentives-protecting-environment-2001
  • Vinti, G., Bauza, V., Clasen, T., Tudor, T., Zurbrügg, C., & Vaccari, M. (2023). Health risks of solid waste management practices in rural Ghana: A semi-quantitative approach toward a solid waste safety plan. Environmental Research216, 114728.
    https://doi.org/10.1016/j.envres.2022.114728.
  • Walls, M. (2011). Deposit-Refund Systems in Practice and Theory (SSRN Scholarly Paper No. 1980142). Social Science Research Network. https://doi.org/10.2139/ssrn.1980142
  • Waqas, M., Hashim, S., Humphries, U. W., Ahmad, S., Noor, R., Shoaib, M., … & Lin, H. A. (2023). Composting processes for agricultural waste management: a comprehensive review. Processes11(3), 731. https://doi.org/10.3390/pr11030731.
  • WASTE COLLECTION (Kogler) PDF | PDF | Waste Management | Municipal Solid Waste. (n.d.). Retrieved November 27, 2024, from https://www.scribd.com/document/381418308/WASTE-COLLECTION-Kogler-pdf
  • Wu, C., Shu, M., Liu, X., Sang, Y., Cai, H., Qu, C., & Liu, J. (2020). Characterization of the volatile compounds emitted from municipal solid waste and identification of the key volatile pollutants. Waste Management103, 314-322.
    https://doi.org/10.1016/j.wasman.2019.12.043
  • Xevgenos, D., Papadaskalopoulou, C., Panaretou, V., Moustakas, K., & Malamis, D. (2015). Success Stories for Recycling of MSW at Municipal Level: A Review. Waste and Biomass Valorization, 6(5), 657–684. https://doi.org/10.1007/s12649-015-9389-9
  • Yang, R., Xu, Z., & Chai, J. (2018). A Review of Characteristics of Landfilled Municipal Solid Waste in Several Countries: Physical Composition, Unit Weight, and Permeability Coefficient. Polish Journal of Environmental Studies27(6) 2425–2435. https://doi.org/10.15244/pjoes/81089.
  • Zaman, A. U., & Lehmann, S. (2013). The zero waste index: A performance measurement tool for waste management systems in a ‘zero waste city.’ Journal of Cleaner Production, 50, 123–132. https://doi.org/10.1016/j.jclepro.2012.11.041.
  • Zhang, J., Zhang, Z., Zhang, J., Fan, G., & Wu, D. (2021). A quantitative study on the benefit of various waste classifications. Advances in Civil Engineering2021(1), 6660927. https://doi.org/10.1155/2021/6660927.
  • Zhang, W. J., & Yuan, S. S. (2019). Characterizing preferential flow in landfilled municipal solid waste. Waste Management84, 20-28. https://doi.org/10.1016/j.wasman.2018.11.023.
  • Zhou, W., Chai, J., Xu, Z., Qin, Y., Cao, J., & Zhang, P. (2024). A review of existing methods for predicting leachate production from municipal solid waste landfills. Environmental Science and Pollution Research31(11), 16131-16149. https://doi.org/10.1007/s11356-024-32289-y.

check for update

Life as Basic Science: An Overview and Prospects for Future [Volume: 3]

How to Cite
Shouvik Das, Anushree Pal, Shaheen Hasan Dawan, Sukalyan Chakraborty and Tanushree Bhattacharya (2024). Environmental Hazards Associated with the Disposal of Municipal Solid Waste. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Jayanta Kumar Das, Dr. Mayur Doke and Dr. Vincent Avecilla (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 3, pp. 97-114. ISBN: 978-81-978955-7-9
DOI: https://doi.org/10.52756/lbsopf.2024.e03.004

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device