Green Solvents in Organic Synthesis: A Futuristic Approach
Ankita Chakraborty, Ph.D
Department of Chemistry, The ICFAI University Tripura,Kamalghat, Mohanpur, Agartala, Pin 799210, Tripura, India.
https://orcid.org/0000-0001-6544-986X
Published online: 27th May, 2024
DOI: https://doi.org/10.52756/bhstiid.2024.e01.004
Keywords: Green Solvents, Sustainable Chemistry, Organic Reactions.
Abstract:
The field of Green or Sustainable Chemistry has gained recognition as a significant scientific topic, gathering immense interest from the scientific community. The research conducted in this field relies significantly on the “Twelve Principles of Green Chemistry,” which serve as the fundamental framework for all chemical processes. Researchers are highly interested in developing chemical processes that might mitigate the environmental harm caused by toxic solvents, taking into consideration environmental concerns. Extended exposure to hazardous solvents has a detrimental impact on living beings, causing significant harm to the majority of human organs. Volatile organic molecules derived from petrochemicals, commonly referred to as conventional organic solvents, provide a significant peril to terrestrial, atmospheric, and aquatic organisms. The concept of utilizing water, ionic liquids, organic carbonates, supercritical carbon dioxide, deep eutectic solvents, and non-toxic liquid polymers as catalysts or reaction mediums has gathered significant interest due to their potential to remove environmental hazards. These diverse combinations of solvents fall under the category of green solvents, which are distinguished by their low toxicity, easy handling and reusability. However, the total substitution of traditional solvents with environmentally friendly solvents has a negative effect on industrial production and chemical synthesis. Despite this, some effective alternatives have demonstrated their chemical efficiency and widespread utilization. This chapter will provide a concise overview of ecologically friendly solvent alternatives to traditional solvents, focusing on their application in chemical processes with a green matrix.
References:
- Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., and Tambyrajah, V. (2003). Novel solvent properties of choline chloride/ urea. Chemical Communications (Cambridge, England), (1), 70-71.doi:10.1039/b210714g
- Abbott, A. P., Boothby, D., Capper, G., Davies, D. L., and Rasheed, R. K. (2004). Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126(29), 9142-9147. doi:10.1021/ja048266j
- Anastas, P., and Eghbali, N. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1), 301-312. doi:10.1039/b918763b
- Azizi, N., and Gholibeglo, E. (2012). A highly efficient synthesis of dithiocarbamates in green reaction media. RSC Advances, 2(19), 7413-7416. doi:10.1039/c2ra20615c
- Banerjee, S., Mitra, S., Velhal, M., Desmukh, V., & Ghosh, B. (2021). Impact of agrochemicals on the environment and human health: The concerns and remedies. Int. J. Exp. Res. Rev., 26, 125-140. https://doi.org/10.52756/ijerr.2021.v26.010
- Biswas, S., & Saha, S. (2021). A report groundwater arsenic contamination assay in the delta area of West Bengal. Int. J. Exp. Res. Rev., 25, 84-88. https://doi.org/10.52756/ijerr.2021.v25.008
- Bhattacharya, P. (2015). Transfer of heavy metals from lake water to biota: a potential threat to migratory birds of Mathura lake, West Bengal, India. Int. J. Exp. Res. Rev., 1, 1-7. https://doi.org/10.52756/ijerr.2015.v01.001
- Breslow, R. (2004). Determining the geometries of transition States by use of antihydrophobic additives in water. Accounts of Chemical Research, 37(7), 471-478. doi:10.1021/ar040001m
- Chakraborty, A., Purkait, R., De, U. C., Maiti, D. K., and Majumdar, S. (2016). Anion dependent imidazolium protic ionic liquid catalyzed solvent-free general strategy for chemoselective Fmoc and cbz protection of amines and their chiral analogues. Chemistry Select, 1(11), 2668–2672. doi:10.1002/slct.201600267
- Chakraborty, A., Debnath, S., Ghosh, T., Maiti, D. K., and Majumdar, S. (2018). An efficient strategy for N-alkylation of benzimidazoles/imidazoles in SDS-aqueous basic medium and N-alkylation induced ring opening of benzimidazoles. Tetrahedron, 74(40), 5932-5941. doi:10.1016/j.tet.2018.08.029
- Chakraborty, A., Ghosh, T., Maiti, D. K., and Majumdar, S. (2019). BMIm[OH] catalyzed rapid, mild and improved protocol for the synthesis of 3-hydroxy-3-(nitroalkyl)indolin-2-one derivatives in water. Chemistry Select, 4(6), 1841-1845. doi:10.1002/slct.201804026
- Chakraborty, A., Majumdar, S., and Maiti, D. K.(2016). Selective exploitation of acetoacetate carbonyl groups using imidazolium based ionic liquids: synthesis of 3-oxo-amides and substituted benzimidazoles. Tetrahedron Letters, 57(30), 3298-3302. doi:10.1016/j.tetlet.2016.06.048
- Clark, J. H., and Tavener, S. J. (2007). Alternative solvents: Shades of green. Organic Process Research and Development, 11(1), 149-155. doi:10.1021/op060160g
- Cole, A. C., Jensen, J. L., Ntai, I., Tran, K. L. T., Weaver, K. J., Forbes, D. C., and Davis, J. H., Jr. (2002). Novel Brønsted acidic ionic liquids and their use as dual Solvent- Catalysts. Journal of the American Chemical Society, 124(21), 5962-5963. doi:10.1021/ja026290w
- Dilauro, G., Cicco, L., Perna, F. M., Vitale, P., and Capriati, V. (2017). Solvent-catalyzed umpolung carbon sulfur bond-forming reactions by nucleophilic addition of thiolate and sulfinate ions to in situ-derived nitrosoalkenes in deep eutectic solvents. Comptes Rendus. Chimie, 20(6), 617- 623. doi:10.1016/j.crci.2017.01.008
- Fernandes, T. de A., Carvalho, R. de C. C., Gonçalves, T. M. D., da Silva, A. J. M., and Costa, P. R. R. (2008). A tandem palladium-catalyzed Heck-lactonization through the reaction of ortho-iodophenols with β-substituted acrylates: synthesis of 4, 6-substituted coumarins. Tetrahedron Letters, 49(20), 3322–3325. doi:10.1016/j.tetlet.2008.03.037
- Kobayashi, S., Hamada, T., and Manabe, K. (2002). The catalytic asymmetric Mannich-type reactions in aqueous media. Journal of the American Chemical Society, 124(20), 5640-5641. doi:10.1021/ja026094p
- Li, B., and Dixneuf, P. H. (2013). sp2 C-H bond activation in water and catalytic cross-coupling reactions. Chemical Society Reviews, 42(13), 5744-5767. doi:10.1039/c3cs60020c
- Liu, C., Ni, Q., Hu, P., and Qiu, J. (2011). Oxygen-promoted PdCl2-catalyzed ligand-free Suzuki reaction in aqueous media. Organic and Biomolecular Chemistry, 9(4), 1054-1060. doi:10.1039/c0ob00524j
- Liu, S., Ni, Y., Wei, W., Qiu, F., Xu, S., and Ying, A. (2014). Choline chloride and urea based eutectic solvents: Effective catalytic systems for the Knoevenagel condensation reactions of substituted acetonitriles. Journal of Chemical Research, 38(3), 186-188. doi:10.3184/174751914×13926483381319
- Majumdar, S., De, J., Chakraborty, A., and Maiti, D. K. (2014). General solvent-free highly selective N-tert-butyloxycarbonylation strategy using protic ionic liquid as an efficient catalyst. RSC Advances, 4(47), 24544- 24550. doi:10.1039/c4ra02670e
- Majumdar, S., Chakraborty, M., Maiti, D. K., Chowdhury, S., and Hossain, J. (2014). Activation of 1,3-dioxolane by a protic ionic liquid in aqueous media: a green strategy for the selective hydrolytic cleavage of acetals and ketals. RSC Advances, 4(32), 16497-16502. doi:10.1039/c4ra00870g
- Mernissi Cherigui, E. A., Sentosun, K., Bouckenooge, P., Vanrompay, H., Bals, S., Terryn, H., and Ustarroz, J. (2017). Comprehensive study of the electro deposition of nickel nanostructures from deep eutectic solvents: Self-limiting growth by electrolysis of residual water. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 121(17), 9337-9347. doi:10.1021/acs.jpcc.7b01104
- Nam, N. N., Do, H. D. K., Trinh, K. T. L., and Lee, N. Y. (2023). Design strategy and application of deep eutectic solvents for green synthesis of nanomaterials. Nanomaterials, 13(7), 1164. doi:10.3390/nano13071164
- Narayan, S., Muldoon, J., Finn, M. G., Fokin, V. V., Kolb, H. C., and Sharpless, K. B. (2005). ‘On water’: unique reactivity of organic compounds in aqueous suspension. Angewandte Chemie (International Ed. in English), 44(21), 3275-3279. doi: 10.1002/anie.200462883
- Prasad, N., Bhattacharya, T., & Lal, B. (2023). Chemometric Techniques in the Assessment of Ambient Air Quality and Development of Air Quality Index of Coal Mining Complex: A Statistical Approach. Int. J. Exp. Res. Rev., 36, 433-446. https://doi.org/10.52756/ijerr.2023.v36.018a
- Rideout, D. C., and Breslow, R. (1980). Hydrophobic acceleration of Diels-Alder reactions. Journal of the American Chemical Society, 102(26), 7816-7817. doi:10.1021/ja00546a048
- Sebest, F., Lachhani, K., Pimpasri, C., Casarrubios, L., White, A. J. P., Rzepa, H. S., and Díez-González, S. (2020). Cycloaddition reactions of azides and electron‐deficient alkenes in deep eutectic solvents: Pyrazolines, aziridines and other surprises. Advanced Synthesis and Catalysis, 362(9), 1877-1886. doi:10.1002/adsc.201901614
- Sheldon, R. A., Lau, R. M., Sorgedrager, M. J., van Rantwijk, F., and Seddon, K. R. (2002). Biocatalysis in ionic liquids. Green Chemistry: An International Journal and Green Chemistry Resource: GC, 4(2), 147-151. doi:10.1039/b110008b
- Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 99(8), 2071-2084. doi: 10.1021/cr980032t
- Welton, T. (2004). Ionic liquids in catalysis. Coordination Chemistry Reviews, 248(21-24), 2459-2477. doi:10.1016/j.ccr.2004.04.015
- Zhao, D., Wu, M., Kou, Y., and Min, E. (2002). Ionic liquids: applications in catalysis. Catalysis Today, 74(1-2), 157-189. doi:10.1016/s0920-5861(01)00541-7 Zha, Z., Hui, A., Zhou, Y., Miao, Q., Wang, Z., and Zhang, H. (2005). A recyclable electrochemical allylation in water. Organic Letters, 7(10), 1903-1905. doi :10.1021/ol050483h
How to Cite
Ankita Chakraborty, Ph.D (2024). Green Solvents in Organic Synthesis: A Futuristic Approach. © International Academic Publishing House (IAPH), Dr. Suman Adhikari, Dr. Manik Bhattacharya and Dr. Ankan Sinha, A Basic Handbook of Science, Technology and Innovation for Inclusive Development [Volume: 1],pp. 62-70. ISBN: 978-81-969828-4-3.
DOI: https://doi.org/10.52756/bhstiid.2024.e01.004
SHARE WITH EVERYONE
Continue reading in any device
Our Other Books –