Use of hyaluronic acid in targeted therapy of cancer

Puspendu Roy
Assistant professor of Zoology, Ranaghat College. Old Berhampore Road, Ranaghat, Nadia, West Bengal, India

Published online: 30 June, 2024

DOI: https://doi.org/10.52756/lbsopf.2024.e02.005

Keywords: chemotherapy, combination cancer therapy, hyaluronic acid (HA), anomedicine, nanoparticles (NPs), targeted therapy

Abstract:

Currently, cancer is one of the leading causes of death worldwide. That’s why scientists all over the world are researching how to deliver drugs against cancer cells better. The use of Hyaluronic acid in drug delivery against cancer cells has shown a glimmer of hope. Being a natural polymer, it is non-toxic, bio-degradable, non-immunogenic and non-inflammatory. At the same time, HA can recognize and bind to several receptors present in cancer cells, such as CD44, Receptor for HA Mediated Motility (RHAMM), Lymphatic Vessel Endothelial Receptor-1(LYVE-1). Not only this HA increases the solubility, bioavailability, stability, targeting efficiency of various anticancer drugs and reduces toxicity. Because of the above advantages HA can be used very successfully in the preparation of various anti-cancer formulations.  Conjugation of HA with drugs, formation of HA based nanoparticles and HA coated inorganic nanoparticles are few of them. In this review paper I have tried to detail the application of the above anti-cancer formulations which makes HA suitable for future biomedical applications in cancer treatment.

References:

  • Arpicco S, Milla P, Stella B, Molecules FD-, 2014 undefined (2014) Hyaluronic acid conjugates as vectors for the active targeting of drugs, genes and nanocomposites in cancer treatment. mdpi.com 19:3193–3230. https://doi.org/10.3390/molecules19033193
  • Biswas S, Vaze OS, Movassaghian S, Torchilin VP (2013) Polymeric Micelles for the Delivery of Poorly Soluble Drugs. Drug Delivery Strategies for Poorly Water-Soluble Drugs 411–476. https://doi.org/10.1002/9781118444726.CH14
  • Blanco E, Kessinger CW, Sumer BD, Gao J (2009) Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med 234:123–131. https://doi.org/10.3181/0808-MR-250
  • Cai S, Xie Y, Bagby T, … MC-J of S, 2008 undefined Intralymphatic chemotherapy using a hyaluronan–cisplatin conjugate. Elsevier
  • Chen ZG (2010) Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med 16:594–602. https://doi.org/10.1016/J.MOLMED.2010.08.001
  • Choi KY, Saravanakumar G, Park JH, Park K (2012) Hyaluronic acid-based nanocarriers for intracellular targeting: Interfacial interactions with proteins in cancer. Colloids Surf B Biointerfaces 99:82–94. https://doi.org/10.1016/J.COLSURFB.2011.10.029
  • Cohen SM, Rockefeller N, Mukerji R, Durham D, Forrest ML, Cai S, Cohen MS, Shnayder Y (2013) Efficacy and Toxicity of Peritumoral Delivery of Nanoconjugated Cisplatin in an In Vivo Murine Model of Head and Neck Squamous Cell Carcinoma. JAMA Otolaryngology–Head & Neck Surgery 139:382–387. https://doi.org/10.1001/JAMAOTO.2013.214
  • Dadwal A, Baldi A, Kumar Narang R (2018) Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol 46:295–305. https://doi.org/10.1080/21691401.2018.1457039
  • Debele TA, Yu LY, Yang CS, Shen YA, Lo CL (2018) PH- and GSH-Sensitive Hyaluronic Acid-MP Conjugate Micelles for Intracellular Delivery of Doxorubicin to Colon Cancer Cells and Cancer Stem Cells. Biomacromolecules 19:3725–3737. https://doi.org/10.1021/ACS.BIOMAC.8B00856
  • Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291. https://doi.org/10.2147/IJN.S146315
  • Dubey RD, Klippstein R, Wang JTW, Hodgins N, Mei KC, Sosabowski J, Hider RC, Abbate V, Gupta PN, Al-Jamal KT (2017) Novel Hyaluronic Acid Conjugates for Dual Nuclear Imaging and Therapy in CD44-Expressing Tumors in Mice In Vivo. Nanotheranostics 1:59. https://doi.org/10.7150/NTNO.17896
  • Fan X, Zhao X, Qu X, Fang J (2015) pH sensitive polymeric complex of cisplatin with hyaluronic acid exhibits tumor-targeted delivery and improved in vivo antitumor effect. Int J Pharm 496:644–653. https://doi.org/10.1016/J.IJPHARM.2015.10.066
  • Gao Y, Hu L, Liu Y, Xu X, Wu C (2019) Targeted Delivery of Paclitaxel in Liver Cancer Using Hyaluronic Acid Functionalized Mesoporous Hollow Alumina Nanoparticles. Biomed Res Int 2019. https://doi.org/10.1155/2019/2928507
  • Goodarzi K, Rao SS (2021) Hyaluronic acid-based hydrogels to study cancer cell behaviors. J Mater Chem B 9:6103–6115. https://doi.org/10.1039/D1TB00963J
  • Gote V, Deep Sharma A, Pal D (2021) Hyaluronic Acid-Targeted Stimuli-Sensitive Nanomicelles Co-Encapsulating Paclitaxel and Ritonavir to Overcome Multi-Drug Resistance in Metastatic Breast Cancer and Triple-Negative Breast Cancer Cells. International Journal of Molecular Sciences 2021, Vol 22, Page 1257 22:1257. https://doi.org/10.3390/IJMS22031257
  • Gotov O, Battogtokh G, Shin D, Ko YT (2018) Hyaluronic acid-coated cisplatin conjugated gold nanoparticles for combined cancer treatment. Journal of Industrial and Engineering Chemistry 65:236–243. https://doi.org/10.1016/J.JIEC.2018.04.034
  • Han HS, Choi KY, Ko H, Jeon J, Saravanakumar G, Suh YD, Lee DS, Park JH (2015) Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy. Journal of Controlled Release 200:158–166. https://doi.org/10.1016/J.JCONREL.2014.12.032
  • Hayward SL, Wilson CL, Kidambi S (2016) Hyaluronic acid-conjugated liposome nanoparticles for targeted delivery to CD44 overexpressing glioblastoma cells. Oncotarget 7:34158. https://doi.org/10.18632/ONCOTARGET.8926
  • Hrubý M, Koňák Č, Release KU-J of C, 2005 undefined Polymeric micellar pH-sensitive drug delivery system for doxorubicin. Elsevier
  • Hrubý M, Koňák Č, Ulbrich K (2005) Polymeric micellar pH-sensitive drug delivery system for doxorubicin. Journal of Controlled Release 103:137–148. https://doi.org/10.1016/J.JCONREL.2004.11.017
  • Jian YS, Chen CW, Lin CA, Yu HP, Lin HY, Liao MY, Wu SH, Lin YF, Lai PS (2017) Hyaluronic acid–nimesulide conjugates as anticancer drugs against CD44-overexpressing HT-29 colorectal cancer in vitro and in vivo. Int J Nanomedicine 12:2315. https://doi.org/10.2147/IJN.S120847
  • Jiang T, Zhang Z, Zhang Y, Lv H, Zhou J, Li C, Hou L, Zhang Q (2012) Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials 33:9246–9258. https://doi.org/10.1016/J.BIOMATERIALS.2012.09.027
  • Kesharwani P, Xie L, Mao G, Padhye S, Iyer AK (2015) Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B Biointerfaces 136:413–423. https://doi.org/10.1016/J.COLSURFB.2015.09.043
  • Kim JH, Moon MJ, Kim DY, Heo SH, Jeong YY (2018) Hyaluronic Acid-Based Nanomaterials for Cancer Therapy. Polymers 2018, Vol 10, Page 1133 10:1133. https://doi.org/10.3390/POLYM10101133
  • Kim KS, Park SJ, Lee MY, Lim KG, Hahn SK (2012) Gold half-shell coated hyaluronic acid-doxorubicin conjugate micelles for theranostic applications. Macromol Res 20:277–282. https://doi.org/10.1007/S13233-012-0062-X
  • Kumar CS, Raja MD, Sundar DS, Gover Antoniraj M, Ruckmani K (2015) Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells). Carbohydr Polym 128:63–74. https://doi.org/10.1016/J.CARBPOL.2015.04.010
  • Lee SY, Kang MS, Jeong WY, Han DW, Kim KS (2020) Hyaluronic Acid-Based Theranostic Nanomedicines for Targeted Cancer Therapy. Cancers 2020, Vol 12, Page 940 12:940. https://doi.org/10.3390/CANCERS12040940
  • Leonelli F, La Bella A, Migneco LM, Bettolo RM (2008) Design, Synthesis and Applications of Hyaluronic Acid-Paclitaxel Bioconjugates†. Molecules 2008, Vol 13, Pages 360-378 13:360–378. https://doi.org/10.3390/MOLECULES13020360
  • Liu # D, Zhang # QI, Wang J, Fan LI, Zhu W, Cai D (2019) Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. ingentaconnect.com 74:83–90. https://doi.org/10.1691/ph.2019.8152
  • Liu K, Wang ZQ, Wang SJ, Liu P, Qin YH, Ma Y, Li XC, Huo ZJ (2015) Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation. Int J Nanomedicine 10:6445. https://doi.org/10.2147/IJN.S89476
  • Lo CL, Lin SJ, Tsai HC, Chan WH, Tsai CH, Cheng CHD, Hsiue GH (2009) Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery. Biomaterials 30:3961–3970. https://doi.org/10.1016/J.BIOMATERIALS.2009.04.002
  • Mittapalli R, Liu X, Adkins C, … MN-M cancer, 2013 undefined Paclitaxel–Hyaluronic NanoConjugates Prolong Overall Survival in a Preclinical Brain Metastases of Breast Cancer ModelPaclitaxel Nanoconjugates for Breast. AACR
  • Noh I, Kim HO, Choi J, Choi Y, Lee DK, Huh YM, Haam S (2015) Co-delivery of paclitaxel and gemcitabine via CD44-targeting nanocarriers as a prodrug with synergistic antitumor activity against human biliary cancer. Biomaterials 53:763–774. https://doi.org/10.1016/J.BIOMATERIALS.2015.03.006
  • Oh EJ, Park K, Kim KS, Kim J, Yang JA, Kong JH, Lee MY, Hoffman AS, Hahn SK (2010) Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. Journal of Controlled Release 141:2–12. https://doi.org/10.1016/J.JCONREL.2009.09.010
  • Park JH, Cho HJ, Yoon HY, Yoon IS, Ko SH, Shim JS, Cho JH, Park JH, Kim K, Kwon IC, Kim DD (2014) Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. Journal of Controlled Release 174:98–108. https://doi.org/10.1016/J.JCONREL.2013.11.016
  • Peer D, Margalit R (2004) Tumor-Targeted Hyaluronan Nanoliposomes Increase the Antitumor Activity of Liposomal Doxorubicin in Syngeneic and Human Xenograft Mouse Tumor Models. Neoplasia 6:343. https://doi.org/10.1593/NEO.03460
  • Prajapati SK, Jain A, Shrivastava C, Jain AK (2019) Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int J Biol Macromol 123:691–703. https://doi.org/10.1016/J.IJBIOMAC.2018.11.116
  • Qiu L, Li Z, Qiao M, Long M, Wang M, Zhang X, biomaterialia CT-A, 2014 undefined Self-assembled pH-responsive hyaluronic acid–g-poly (l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Elsevier
  • Qiu L, Li Z, Qiao M, Long M, Wang M, Zhang X, Tian C, Chen D (2014) Self-assembled pH-responsive hyaluronic acid–g-poly(l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater 10:2024–2035. https://doi.org/10.1016/J.ACTBIO.2013.12.025
  • Rao J, Khan A (2013) Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J Am Chem Soc 135:14056–14059. https://doi.org/10.1021/JA407514Z
  • Rawat M, Singh D, Saraf S, Zasshi SS-Y, 2008 undefined (2008) Lipid carriers: a versatile delivery vehicle for proteins and peptides. jstage.jst.go.jp 128:269–280
  • Rosato A, Banzato A, De Luca G, Renier D, Bettella F, Pagano C, Esposito G, Zanovello P, Bassi PF (2006) HYTAD1-p20: A new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer. Urologic Oncology: Seminars and Original Investigations 24:207–215. https://doi.org/10.1016/J.UROLONC.2005.08.020
  • Ryong Lee C, Gyun Kim G, Bum Park S, Wook Kim S, Min J, Yun W-S, Jeong J-R (2021) Synthesis of Hyaluronic Acid-Conjugated Fe3O4@CeO2 Composite Nanoparticles for a Target-Oriented Multifunctional Drug Delivery System. Micromachines 2021, Vol 12, Page 1018 12:1018. https://doi.org/10.3390/MI12091018
  • Schirrmacher V (2019) From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol 54:407–419. https://doi.org/10.3892/IJO.2018.4661/HTML
  • Shahriari M, Taghdisi S, … KA-I journal of, 2019 undefined Synthesis of hyaluronic acid-based polymersomes for doxorubicin delivery to metastatic breast cancer. Elsevier
  • Shahriari M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M (2019) Synthesis of hyaluronic acid-based polymersomes for doxorubicin delivery to metastatic breast cancer. Int J Pharm 572:118835. https://doi.org/10.1016/J.IJPHARM.2019.118835
  • Surace C, Arpicco S, Dufaÿ-Wojcicki A, Marsaud V, Bouclier C, Clay D, Cattel L, Renoir JM, Fattal E (2009) Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. Mol Pharm 6:1062–1073. https://doi.org/10.1021/MP800215D
  • Sutradhar KB, Amin MdL (2014) Nanotechnology in Cancer Drug Delivery and Selective Targeting. ISRN Nanotechnology 2014:1–12. https://doi.org/10.1155/2014/939378
  • Taetz S, Bochot A, Surace C, Arpicco S, Renoir JM, Schaefer UF, Marsaud V, Kerdine-Roemer S, Lehr CM, Fattal E (2009) Hyaluronic Acid-Modified DOTAP/DOPE Liposomes for the Targeted Delivery of Anti-Telomerase siRNA to CD44-Expressing Lung Cancer Cells. http://www.liebertpub.com/oli 19:103–115. https://doi.org/10.1089/OLI.2008.0168
  • Thomas RG, Moon MJ, Lee H, Sasikala ARK, Kim CS, Park IK, Jeong YY (2015) Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy. Carbohydr Polym 131:439–446. https://doi.org/10.1016/J.CARBPOL.2015.06.010
  • Tian G, Sun X, Bai J, Dong J, Zhang B, Gao Z, Wu J (2019) Doxorubicin-loaded dual-functional hyaluronic acid nanoparticles: Preparation, characterization and antitumor efficacy in vitro and in vivo. Mol Med Rep 19:133–142. https://doi.org/10.3892/MMR.2018.9687/HTML
  • Tong Y, Wan W-J, Yang H, River Y, Group P, Wang Y, Wang D-D, Liu Y (2020) Dual-targeted cationic liposomes modified with hyaluronic acid and folic acid deliver siRNA Bcl-2 in the treatment of cervical cancer. https://doi.org/10.21203/rs.3.rs-20688/v1
  • Vahedi N, Tabandeh F, Mahmoudifard M (2022) Hyaluronic acid–graphene quantum dot nanocomposite: Potential target drug delivery and cancer cell imaging. Biotechnol Appl Biochem 69:1068–1079. https://doi.org/10.1002/BAB.2178
  • Vogus DR, Evans MA, Pusuluri A, Barajas A, Zhang M, Krishnan V, Nowak M, Menegatti S, Helgeson ME, Squires TM, Mitragotri S (2017) A hyaluronic acid conjugate engineered to synergistically and sequentially deliver gemcitabine and doxorubicin to treat triple negative breast cancer. Journal of Controlled Release 267:191–202. https://doi.org/10.1016/J.JCONREL.2017.08.016
  • Wang R, Luo Y, Yang S, Lin J, Gao D, Zhao Y, Liu J, Shi X, Wang X (2016) Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular. Springer. https://doi.org/10.1038/srep33844
  • WHO report on cancer: setting priorities, investing wisely and providing care for all. https://www.who.int/publications/i/item/9789240001299. Accessed 8 Mar 2023
  • Wickens JM, Alsaab HO, Kesharwani P, Bhise K, Amin MCIM, Tekade RK, Gupta U, Iyer AK (2017) Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discov Today 22:665–680. https://doi.org/10.1016/J.DRUDIS.2016.12.009
  • Wu P, Sun Y, Dong W, Zhou H, Guo S, Zhang L, Wang X, Wan M, Zong Y (2019) Retracted Article: Enhanced anti-tumor efficacy of hyaluronic acid modified nanocomposites combined with sonochemotherapy against subcutaneous and metastatic breast tumors. Nanoscale 11:11470–11483. https://doi.org/10.1039/C9NR01691K
  • Xie Y, Aillon KL, Cai S, Christian JM, Davies NM, Berkland CJ, Forrest ML (2010) Pulmonary delivery of cisplatin–hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer. Int J Pharm 392:156–163. https://doi.org/10.1016/J.IJPHARM.2010.03.058
  • Xu K, Yao H, Fan D, Zhou L, Polymers SW-C, 2021 undefined Hyaluronic acid thiol modified injectable hydrogel: Synthesis, characterization, drug release, cellular drug uptake and anticancer activity. Elsevier
  • Xu K, Yao H, Fan D, Zhou L, Wei S (2021) Hyaluronic acid thiol modified injectable hydrogel: Synthesis, characterization, drug release, cellular drug uptake and anticancer activity. Carbohydr Polym 254:117286. https://doi.org/10.1016/J.CARBPOL.2020.117286
  • Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X (2012) Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 8:3280–3294. https://doi.org/10.1039/C2SM06463D
  • Yang M, Lee S, Kim S, Koo J, … JS-J of C, 2020 undefined Selenium and dopamine-crosslinked hyaluronic acid hydrogel for chemophotothermal cancer therapy. Elsevier
  • Yang M, Lee SY, Kim S, Koo JS, Seo JH, Jeong DI, Hwang CR, Lee J, Cho HJ (2020) Selenium and dopamine-crosslinked hyaluronic acid hydrogel for chemophotothermal cancer therapy. Journal of Controlled Release 324:750–764. https://doi.org/10.1016/J.JCONREL.2020.04.024
  • Yang T, Li W, Duan X, Zhu L, Fan L, Qiao Y, Wu H (2016) Preparation of two types of polymeric micelles based on poly(β-l-malic acid) for antitumor drug delivery. PLoS One 11. https://doi.org/10.1371/JOURNAL.PONE.0162607
  • Yin T, Wang P, Li J, Zheng R, Zheng B, Cheng D, Biomaterials RL-, 2013 undefined Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Elsevier
  • Yin T, Wang P, Li J, Zheng R, Zheng B, Cheng D, Li R, Lai J, Shuai X (2013) Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials 34:4532–4543. https://doi.org/10.1016/J.BIOMATERIALS.2013.02.067
  • Yu T, Li Y, Gu X, Li Q (2020) Development of a Hyaluronic Acid-Based Nanocarrier Incorporating Doxorubicin and Cisplatin as a pH-Sensitive and CD44-Targeted Anti-Breast Cancer Drug Delivery System. Front Pharmacol 11. https://doi.org/10.3389/FPHAR.2020.532457/FULL
  • Zhang J, He C, Fei X, Xu T (2019) Anti-Leukemia Activity of Hyaluronic Acid Coated Silver Nanoparticles for Selective Targeting to Leukemic Cells. J Biomater Tissue Eng 8:906–910. https://doi.org/10.1166/JBT.2018.1812 Zhang Y, Wu K, Sun H, Zhang J, Yuan J, Zhong Z (2018) Hyaluronic Acid-Shelled Disulfide-Cross-Linked Nanopolymersomes for Ultrahigh-Efficiency Reactive Encapsulation and CD44-Targeted Delivery of Mertansine Toxin. ACS Appl Mater Interfaces 10:1597–1604. https://doi.org/10.1021/ACSAMI.7B17718

check for update

Life as Basic
Science: An Overview and Prospects for the Future Volume: 2

How to Cite
Puspendu Roy (2024). Use of hyaluronic acid in targeted therapy of cancer. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Latoya Appleton, Dr. Jayanta Kumar Das, Madhumita Das (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 2, pp. 56-73. ISBN: 978-81-969828-6-7
Doi: https://doi.org/10.52756/lbsopf.2024.e02.005

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device