Evaluating the Consequences of Parasitic Nematodes on Agricultural Productivity
Sujit Das
Coastal Environmental Studies Research Centre, Egra SSB College, under Vidyasagar University, West Bengal, India
https://orcid.org/0009-0007-1920-6788
Sourav Bar
Coastal Environmental Studies Research Centre, Egra SSB College, under Vidyasagar University, West Bengal, India
https://orcid.org/0009-0003-9690-6893
Nithar Ranjan Madhu
Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, West Bengal, India
https://orcid.org/0000-0003-4198-5048
Sudipta Kumar Ghorai
Coastal Environmental Studies Research Centre, Egra SSB College, under Vidyasagar University, West Bengal, India
https://orcid.org/0000-0003-3478-3632
Published online:8 August, 2024
DOI: https://doi.org/10.52756/boesd.2024.e03.006
Keywords: Parasitic nematodes, Stylet, Agriculture, Crop plant, Taxonomy, Management
Abstract:
One of the world’s biggest challenges today is providing enough food for a growing population, especially in areas like Africa where resources are few. The need for food is predicted to increase by 75% by 2050, while the global population is estimated to increase by 35%. Parasitic nematodes substantially threaten crop yields and quality, although they are often overlooked. Tiny, unsegmented roundworms known as parasitic nematodes cause significant harm to plants; they parasitize. The specialized features of certain nematodes, such as root-knot, cyst, lesion, and foliar nematodes, enable them to enter plant cells and take up nutrients, resulting in stunted development, lower yields, and, in extreme situations, plant death. Because the damage they do is typically hidden by other factors that hinder progress, their significance is frequently undervalued. A comprehensive strategy focusing on population control instead of eradication is necessary for effective nematode management. To lessen their effects on crop productivity and guarantee global food security, this chapter emphasizes the serious agricultural risks these nematodes represent and stresses the significance of integrated control strategies.
References:
- Abad, P., Gouzy, J., Aury, J. M., Castagnone-Sereno, P., Danchin, E. G., Deleury, E., … & Wincker, P. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26(8), 909-915. https://doi.org/10.1038/nbt.1482
- Abd El-Rahman, S. S., & Mohamed, H. I. (2014). Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiologiae Plantarum, 36, 343-354. https://doi.org/10.1007/s11738-013-1416-5
- Abu-Gharbieh, W. I., & Perry, V. G. (1970). Host differences among Florida populations of Belonolaimus longicaudatus Rau. Journal of Nematology, 2(3), 209.
- Ami, S. N., & Taher, I. I. (2013). Wheat Seed Gall Nematode Anguina Tritici in Duhok Province, Kurdistan Region-Iraq and its Biology. Science Journal of University of Zakho, 1(2), 674-685.
- Baldridge, G. D., O’neill, N. R., & Samac, D. A. (1998). Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Molecular Biology, 38, 999-1010. https://doi.org/10.1023/A:1006182908528
- Barker, K. R., & Davis, E. L. (1996). Assessing plant-nematode infestations and infections. Advances in Botanical Research, 23, 103-136. https://doi.org/10.1016/S0065-2296(08)60104-4
- Bauters, L., Haegeman, A., Kyndt, T., & Gheysen, G. (2014). Analysis of the transcriptome of H. irschmanniella oryzae to explore potential survival strategies and host–nematode interactions. Molecular Plant Pathology, 15(4), 352-363. https://doi.org/10.1111/mpp.12098
- Bernard, G. C., Egnin, M., & Bonsi, C. (2017). The impact of plant-parasitic nematodes on agriculture and methods of control. Nematology-concepts, Diagnosis and Control, 10, 121-151. https://doi.org/10.5772/intechopen.68958
- Bharali, A., Bhagawati, B., & Uday, K. (2019). Bio-efficacy of native bioagents and biofertilizers for the management of root-knot nematode Meloidogyne incognita infecting black gram Vigna mungo. Int. J. Curr. Microbiol. App. Sc.i, 8(2), 1484-1501. https://doi.org/10.20546/ijcmas.2019.802.173
- Blyuss, K. B., Fatehi, F., Tsygankova, V. A., Biliavska, L. O., Iutynska, G. O., Yemets, A. I., & Blume, Y. B. (2019). RNAi-based biocontrol of wheat nematodes using natural poly-component biostimulants. Frontiers in Plant Science, 10, 483. https://doi.org/10.3389/fpls.2019.00483
- Bohlmann, H., & Sobczak, M. (2014). The plant cell wall in the feeding sites of cyst nematodes. Frontiers in Plant Science, 5, 89. https://doi.org/10.3389/fpls.2014.00089
- Bonfil, D. J., Dolgin, B., Mufradi, I., & Asido, S. (2004). Bioassay to forecast cereal cyst nematode damage to wheat in fields. Precision Agriculture, 5(4), 329-344. https://doi.org/10.1023/B:PRAG.0000040804.97462.02
- Booker, M. A., & DeLong, A. (2015). Producing the ethylene signal: regulation and diversification of ethylene biosynthetic enzymes. Plant Physiology, 169(1), 42-50. https://doi.org/10.1104/pp.15.00672
- Brand, D., Roussos, S., Pandey, A., Zilioli, P. C., Pohl, J., & Soccol, C. R. (2004). Development of a bionematicide with Paecilomyces lilacinus to control Meloidogyne incognita. Applied Biochemistry and Biotechnology, 118, 81-88. https://doi.org/10.1385/ABAB:118:1-3:081
- Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-based biological control of plant Diseases (Vol. 1849, pp. 273-302). London, UK: IntechOpen. https://doi.org/10.5772/17184
- Cayrol, J. C., Djian, C., & Frankowski, J. P. (1993). Efficacy of abamectin B1 for the control of Meloidogyne arenaria. Fundamental and Applied Nematology, 16(3), 239-246.
- Cayrol, J. C., Djian-Caporallino, C., Panchaud-Mattei, E., Frankowski, J. P., & Pijarowski, L. (1992). La lutte biologique contre les nematodes phytoparasites. Possibilites actuelles et perspectives.
- Chang, J., Wu, X., Wang, Y., Meyerson, L. A., Gu, B., Min, Y., … & Ge, Y. (2013). Does growing vegetables in plastic greenhouses enhance regional ecosystem services beyond the food supply? Frontiers in Ecology and the Environment, 11(1), 43-49. https://doi.org/10.1890/100223
- Childs, N. (2017). US 2016/17 Export Forecast Lowered 2.0 Million Cwt to 110.0 Million cwt. USDA-ERS Situation and Outlook. RCS-17B https://www. ers. usda. gov/webdocs/publications/rcs17b/rcs-17b. pdf, 42787, 471-495.
- Chin, S., Behm, C. A., & Mathesius, U. (2018). Functions of flavonoids in plant–nematode interactions. Plants, 7(4), 85. https://doi.org/10.3390/plants7040085
- Chitwood, D. J. (1992). Nematicidal compounds from plants. In Phytochemical resources for medicine and agriculture (pp. 185-204). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4899-2584-8_8
- Chitwood, D. J. (2003). Research on plant‐parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service. Pest Management Science: Formerly Pesticide Science, 59(6‐7), 748-753. https://doi.org/10.1002/ps.684
- Chitwood, D. J., & Perry, R. N. (2009). Reproduction, physiology and biochemistry. In Root-knot nematodes (pp. 182-200). Wallingford UK: CABI. https://doi.org/10.1079/9781845934927.0182
- Chitwood, D. J., McClure, M. A., Feldlaufer, M. F., Lusby, W. R., & Oliver, T. E. (1987). Sterol composition and ecdysteroid content of eggs of the root-knot nematodes Meloidogyne incognita and M. arenaria. Journal of Nematology, 19(3), 352.
- CIP International Potato Center. Sweetpotato Facts and Figures. 2014. Available from: http://cipotato.org/sweetpotato/facts-2/. [Accessed: 20-03-2017]
- Collange, B., Navarrete, M., Peyre, G., Mateille, T., & Tchamitchian, M. (2011). Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop protection, 30(10), 1251-1262. https://doi.org/10.1016/j.cropro.2011.04.016
- D’Addabbo, T., Carbonara, T., Argentieri, M. P., Radicci, V., Leonetti, P., Villanova, L., & Avato, P. (2013). Nematicidal potential of Artemisia annua and its main metabolites. European Journal of Plant Pathology, 137, 295-304. https://doi.org/10.1007/s10658-013-0240-5
- Davis, E. L., Hussey, R. S., Baum, T. J., Bakker, J., Schots, A., Rosso, M. N., & Abad, P. (2000). Nematode parasitism genes. Annual review of phytopathology, 38(1), 365-396.
- Davis, E. L., Kaplan, D. T., Dickson, D. W., & Mitchell, D. J. (1989). Root tissue response of two related soybean cultivars to infection by lectin-treated Meloidogyne spp. Journal of Nematology, 21(2), 219.
- Decraemer, W., & Hunt, D. J. (2006). Structure and classification. In Plant nematology (pp. 3-32). Wallingford UK: CABI. https://doi.org/10.1079/9781845930561.0003
- Dhakshinamoorthy, S., Mariama, K., Elsen, A., & De Waele, D. (2014). Phenols and lignin are involved in the defence response of banana (Musa) plants to Radopholus similis infection. Nematology, 16(5), 565-576. https://doi.org/10.1163/15685411-00002788
- El-Eslamboly, A. A. S. A., Abd El-Wanis, M. M., & Amin, A. W. (2019). Algal application as a biological control method of root-knot nematode Meloidogyne incognita on cucumber under protected culture conditions and its impact on yield and fruit quality. Egyptian Journal of Biological Pest Control, 29(1), 18. https://doi.org/10.1186/s41938-019-0122-z
- Esteves, I., Maleita, C., & Abrantes, I. (2015). Root-lesion and root-knot nematodes parasitizing potato. European Journal of Plant Pathology, 141, 397-406.
- Faizi, S., Dar, A., Siddiqi, H., Naqvi, S., Naz, A., Bano, S., & Lubna. (2011). Bioassay-guided isolation of antioxidant agents with analgesic properties from flowers of Tagetes patula. Pharmaceutical Biology, 49(5), 516-525.
- FAO. Cereal Supply and Demand Brief [Internet]. 2017. Available from: http://www.fao.org/worldfoodsituation/csdb/en/ [Accessed: 10-03-2017]
- Fosu-Nyarko, J., & Jones, M. G. (2016). Advances in understanding the molecular mechanisms of root lesion nematode host interactions. Annual Review of Phytopathology, 54(1), 253-278.
- Fredrickson, J. K., Li, S. M. W., Gaidamakova, E. K., Matrosova, V. Y., Zhai, M., Sulloway, H. M., … & Daly, M. J. (2008). Protein oxidation: key to bacterial desiccation resistance? The ISME journal, 2(4), 393-403.
- Fudali, S. L., Wang, C., & Williamson, V. M. (2013). Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla. Molecular plant-microbe interactions, 26(1), 75-86. https://doi.org/10.1094/MPMI-05-12-0107-R
- Gheysen, G., & Jones, J. T. (2006). Molecular aspects of plant-nematode interactions. In Plant nematology (pp. 234-254). Wallingford UK: CABI.
- Giebel, J. (1982). Mechanism of resistance to plant nematodes. Annual Review of Phytopathology, 20(1), 257–279. https://doi.org/10.1146/annurev.py.20.090182.001353
- Goswami, B. K., Pandey, R. K., Rathour, K. S., Bhattacharya, C., & Singh, L. (2006). Integrated application of some compatible biocontrol agents along with mustard oil seed cake and furadan on Meloidogyne incognita infecting tomato plants. Journal of Zhejiang University Science B, 7, 873-875.
- Gozel, U., Lamberti, F., Duncan, L., Agostinelli, A., Rosso, L., Nguyen, K., & Adams, B. J. (2006). Molecular and morphological consilience in the characterisation and delimitation of five nematode species from Florida belonging to the Xiphinema americanum-group. Nematology, 8(4), 521-532.
- Hallmann, N., Burchell, M., Schöne, B. R., Irvine, G. V., & Maxwell, D. (2009). High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: techniques for revealing environmental archives and archaeological seasonality. Journal of Archaeological Science, 36(10), 2353-2364.
- Handoo, Z., Kantor, M., & Carta, L. (2020). Taxonomy and identification of principal foliar nematode species (Aphelenchoides and Litylenchus). Plants, 9(11), 1490.
- Haseeb, A., Kumar, V., Shukla, P. K., & Ahmad, A. (2006). Effect of different bioinoculants, organic amendments and pesticides on the management of Meloidogyne incognita–Fusarium solani disease complex on tomato cv. K-25. Indian Journal of Nematology, 36(1), 65-69.
- Hickman, P. (2019). Cover Crops as an Integrated Approach for Pest Suppression and Pollinator Promotion in Arkansas Watermelon Production Systems. University of Arkansas.
- Huang, G., Dong, R., Maier, T., Allen, R., Davis, E. L., Baum, T. J., & Hussey, R. S. (2004). Use of solid‐phase subtractive hybridization for the identification of parasitism gene candidates from the root‐knot nematode Meloidogyne incognita. Molecular plant pathology, 5(3), 217-222.
- Huang, J. S., & Barker, K. R. (1991). Glyceollin I in soybean-cyst nematode interactions: spatial and temporal distribution in roots of resistant and susceptible soybeans. Plant Physiology, 96(4), 1302-1307.
- Hung, C., & Rohde, R. A. (1973). Phenol accumulation related to resistance in tomato to infection by root-knot and lesion nematodes. Journal of Nematology, 5(4), 253.
- Ibrahim, I. K. A., Handoo, Z. A., & Basyony, A. B. (2017). The cyst nematodes Heterodera and Globodera species in Egypt.
- IFAD, U. (2017). The state of food security and nutrition in the world 2017.
- Inserra, R. N., Dunn, R. A., & Vovlas, N. (1994). Host response of ornamental palms to Rotylenchulus reniformis. Journal of nematology, 26(4S), 737.
- Jones, M. G. K., & Fosu‐Nyarko, J. (2014). Molecular biology of root lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Annals of Applied Biology, 164(2), 163-181.
- Jones, M. G. K., & Fosu‐Nyarko, J. (2014). Molecular biology of root lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Annals of Applied Biology, 164(2), 163-181.
- Khan, M. R. (2015). Nematode diseases of crops in India. Recent advances in the diagnosis and management of Plant Diseases, pp. 183-224.
- Khanal, C., Robbins, R. T., Faske, T. R., Szalanski, A. L., McGawley, E. C., & Overstreet, C. (2016). Identification and haplotype designation of Meloidogyne spp. of Arkansas using molecular diagnostics. Nematropica, 46(2), 261-270.
- Knypl, J. S., & Janas, K. M. (1976). Is Decreased Activity of Nitrate Reductase in Roots of Carrot Infested with Northern Root-Knot Nematode Related to the Increased Level of Chlorogenic Acid? Biochemie und Physiologie der Pflanzen, 169(6), 607-615.
- Kundu, K. (2022). Management of root-knot nematodes, Meloidogyne incognita in Okra using wheat flour as bionematocides. Int. J. Exp. Res. Rev., 28, 8-14. https://doi.org/10.52756/ijerr.2022.v28.002
- Lee, Y. S., & Kim, K. Y. (2016). Antagonistic potential of Bacillus pumilus L1 against root‐Knot nematode, Meloidogyne arenaria. Journal of Phytopathology, 164(1), 29-39.
- Lilley, C. J., Atkinson, H. J., & Urwin, P. E. (2005). Molecular aspects of cyst nematodes. Molecular Plant Pathology, 6(6), 577-588.
- López-Martínez, N., Colinas-León, M. T., Peña-Valdivia, C. B., Salinas-Moreno, Y., Fuentes-Montiel, P., Biesaga, M., & Zavaleta-Mejía, E. (2011). Alterations in peroxidase activity and phenylpropanoid metabolism induced by Nacobbus aberrans Thorne and Allen, 1944 in chilli (Capsicum annuum L.) CM334 resistant to Phytophthora capsici Leo. Plant and Soil, 338, 399-409.
- Luis, J. G. (1997, November). Phenylphenalenone-type phytoalexins and phytoanticipins from susceptible and resistant cultivars of Musa species. Its potencial for engineering resistance to fungi and nematodes into banana. In II International Symposium on Banana: I International Symposium on Banana in the Subtropics 490 (pp. 425-432).
- Luque-Ortega, J. R., Martínez, S., Saugar, J. M., Izquierdo, L. R., Abad, T., Luis, J. G., … & Rivas, L. (2004). Fungus-elicited metabolites from plants as an enriched source for new leishmanicidal agents: antifungal phenyl-phenalenone phytoalexins from the banana plant (Musa acuminata) target mitochondria of Leishmania donovani promastigotes. Antimicrobial Agents and Chemotherapy, 48(5), 1534-1540.
- Maggenti, A., & Allen, M. (1959). Nematode structure and life: Wide range of life habits requires combination of characters for identification of parasites classified among nematodes. California Agriculture, 13(9), 5-12.
- Mandal, H. R., Katel, S., Subedi, S., & Shrestha, J. (2021). Plant Parasitic Nematodes and their management in crop production: a review. Journal of Agriculture and Natural Resources, 4(2), 327-338.
- Manzanilla-López, R. H., Costilla, M. A., Doucet, M., Franco, J., Inserra, R. N., Lehman, P. S., … & Evans, K. (2002). The genus Nacobbus Thorne & Allen, 1944 (Nematoda: Pratylenchidae): systematics, distribution, biology and management. Nematropica, 149-228.
- McMichael, P. (2009). Banking on agriculture: a review of the World Development Report 2008. Journal of agrarian change, 9(2), 235-246.
- Mekete, T., Dababat, A. A., Sekora, N., Akyazi, F., & Abebe, E. (2012). Identification key for agriculturally important plant-parasitic nematodes: a manual for nematology. CIMMYT.
- Mendoza, A. R., Kiewnick, S., & Sikora, R. A. (2008). In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Science and Technology, 18(4), 377-389.
- Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J. Biol. Chem., 275, 33712–33717
- Mitiku, M. (2018). Plant-parasitic nematodes and their management: A review. Agric. Res. Technol., 8(1), 30-38.
- Mukhtar, T., Jabbar, A., Raja, M. U., & Javed, H. (2018). Management of root-knot nematode, Meloidogyne incognita, in tomato with two Trichoderma species. Pakistan J. Zool, 50(4), 1589-1592.
- Nicol, J. M., Turner, S. J., Coyne, D. L., Nijs, L. D., Hockland, S., & Maafi, Z. T. (2011). Current nematode threats to world agriculture. Genomics and Molecular Genetics of plant-nematode interactions, 21-43.
- Norton, D. C. (1983). Maize nematode problems. Plant Disease, 67(3), 253-256.
- Opperman, C. H., Bird, D. M., Williamson, V. M., Rokhsar, D. S., Burke, M., Cohn, J., … & Windham, E. (2008). Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proceedings of the National Academy of Sciences, 105(39), 14802-14807.
- Ozberk, I., Yolcu, S., Yücel, A., Köten, M., & Nicol, J. M. (2011). The impact of seed gall nematode on grain yield, quality and marketing prices on durum wheat in Anatolia, Turkey. African Journal of Agricultural Research, 6(16), 3891-3896.
- Pegard, A., Brizzard, G., Fazari, A., Soucaze, O., Abad, P., & Djian-Caporalino, C. (2005). Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology, 95, 158–165.
- Perry, R. N. (1997). Plant signals in nematode hatching and attraction. In Cellular and Molecular Aspects of Plant-nematode Interactions (pp. 38-50). Dordrecht: Springer Netherlands.
- Phani, V., Khan, M. R., & Dutta, T. K. (2021). Plant-parasitic nematodes as a potential threat to protected agriculture: Current status and management options. Crop Protection, 144, 105573.
- Plowright, R. A., Coyne, D. L., Nash, P., & Jones, M. P. (1999). Resistance to the rice nematodes Heterodera sacchari, Meloidogyne graminicola and M. incognita in Oryza glaberrima and O. glaberrima x O. sativa interspecific hybrids. Nematology, 1(7), 745-751.
- Powers, T. O., Szalanski, A. L., Mullin, P. G., Harris, T. S., Bertozzi, T., & Griesbach, J. A. (2001). Identification of seed gall nematodes of agronomic and regulatory concern with PCR-RFLP of ITS1. Journal of Nematology, 33(4), 191.
- Prakob, W., Nguen-Hom, J., Jaimasit, P., Silapapongpri, S., Thanunchai, J., & Chaisuk, P. (2009). Biological control of lettuce root knot disease by use of Pseudomonas aeruginosa, Bacillus subtilis and Paecilomyces lilacinus. Journal of Agricultural Technology, 5(1), 179-191.
- Ralmi, N. H. a. A., Khandaker, M. M., & Mat, N. (2016). Occurrence and control of root knot nematode in crops: A review. Australian Journal of Crop Science, 10(12), 1649–1654. https://doi.org/10.21475/ajcs.2016.10.12.p7444
- Regmi, H., & Desaeger, J. (2020). Integrated management of root-knot nematode (Meloidogyne spp.) in Florida tomatoes combining host resistance and nematicides. Crop Protection, 134, 105170.
- Reynolds, A. M., Dutta, T. K., Curtis, R. H., Powers, S. J., Gaur, H. S., & Kerry, B. R. (2011). Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes. Journal of the Royal Society Interface, 8(57), 568-577.
- Santo, G. S., O’bannon, J. H., Finley, A. M., & Golden, A. M. (1981). Occurrence and host range of a new root-knot nematode (Meloidogyne chitwoodi) in the Pacific Northwest.
- Saraf, M., Pandya, U., & Thakkar, A. (2014). Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological Research, 169(1), 18-29.
- Sato, K., Kadota, Y., & Shirasu, K. (2019). Plant immune responses to parasitic nematodes. Frontiers in plant science, 10, 1165.
- Schmitt, D. P., & Sipes, B. S. (2004, January). Nematode management in crops grown in North America and Hawaii. In Proceedings of the Fourth International Congress of Nematology, 8-13 June 2002, Tenerife, Spain (pp. 63-70). Brill.
- Shah, M. M., & Mahamood, M. (Eds.). (2017). Nematology: Concepts, Diagnosis and Control. BoD–Books on Demand.
- Shah, S. J., Anjam, M. S., Mendy, B., Anwer, M. A., Habash, S. S., Lozano-Torres, J. L., … & Siddique, S. (2017). Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes. Journal of Experimental Botany, 68(21-22), 5949-5960.
- Shokoohi, E., & Duncan, L. W. (2018). Nematode parasites of citrus. In Plant parasitic Nematodes in Subtropical and Tropical Agriculture (pp. 446-476). Wallingford UK: CAB International.
- Sikder, M. M., & Vestergård, M. (2020). Impacts of root metabolites on soil nematodes. Frontiers in Plant Science, 10, 1792.
- Sipes, B. S., & Schmitt, D. P. (1998). Nematode‐pesticide interactions. Plant and Nematode Interactions, 36, 173-185.
- Smaha, D., Mokrini, F., İmren, M., Mokabli, A., & Dababat, A. A. (2019). Morphological and molecular identification of cyst nematode species (Heterodera spp.) in Algerian cereal fields. Journal of Plant Protection Research, 59(3), 400-411.
- Smiley, R. W., & Yan, G. (2010). Cereal cyst nematodes: Biology and management in Pacific Northwest wheat, barley, and oat crops. https://ir.library.oregonstate.edu/concern/administrative_report_or_publications/707957952
- Soriano, I. R., Prot, J. C., & Matias, D. M. (2000). Expression of tolerance for Meloidogyne graminicola in rice cultivars as affected by soil type and flooding. Journal of Nematology, 32(3), 309.
- Soriano, I. R., Riley, I. T., Potter, M. J., & Bowers, W. S. (2004). Phytoecdysteroids: a novel defense against plant-parasitic nematodes. Journal of Chemical Ecology, 30, 1885-1899.
- Subedi, S., Thapa, B., & Shrestha, J. (2020). Root-knot nematode (Meloidogyne incognita) and its management: a review. Journal of Agriculture and Natural Resources, 3(2), 21–31. https://doi.org/10.3126/janr.v3i2.32298
- Tamilarasan, S., & Rajam, M. V. (2013). Engineering crop plants for nematode resistance through host-derived RNA interference. Cell Dev. Biol., 2(2), 114.
- Turner, S. J., & Subbotin, S. A. (2006). Cyst nematodes. Plant Nematology, 91-122.
- Van Damme, V., Hoedekie, A., & Viaene, N. (2005). Long-term efficacy of Pochonia chlamydosporia for management of Meloidogyne javanica in glasshouse crops. Nematology, 7(5), 727-736.
- Verdejo-Lucas, S., & McKenry, M. V. (2004). Management of the citrus nematode, Tylenchulus semipenetrans. Journal of Nematology, 36(4), 424.
- Verdejo-Lucas, S., Ornat, C., Sorribas, F. J., & Stchiegel, A. (2002). Species of root-knot nematodes and fungal egg parasites recovered from vegetables in Almería and Barcelona, Spain. Journal of Nematology, 34(4), 405.
- Wharton, D. A. (1986). Life cycle. In Springer eBooks (pp. 118–148). https://doi.org/10.1007/978-1-4615-8516-9_6
- Whitfield, P. J., & Evans, N. A. (1983). Parthenogenesis and asexual multiplication among parasitic platyhelminths. Parasitology, 86(4), 121-160. https://doi.org/10.1017/S0031182000050873
- Wuyts, N., Swennen, R., & De Waele, D. (2006). Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology, 8(1), 89-101. https://doi.org/10.1163/156854106776179953
- Zasada, I. A., & Ferris, H. (2004). Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biology and Biochemistry, 36(7), 1017-1024. https://doi.org/10.1016/j.soilbio.2003.12.014
- Zhang, S. S., Zhang, S. I., Wang, H. Y, & Chen, Y. F. (2006). Characteristics of sweet potato stem nematode in China. Acta Phytopathologica Sinica, 36(1), 22–27.
How to Cite
Sujit Das, Sourav Bar, Nithar Ranjan Madhu and Sudipta Kumar Ghorai (2024). Evaluating the Consequences of Parasitic Nematodes on Agricultural Productivity © International Academic Publishing House (IAPH), Dr. Nithar Ranjan Madhu, Dr. Tanmay Sanyal, Dr. Koushik Sen, Professor Biswajit (Bob) Ganguly and Professor Roger I.C. Hansell (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 3], pp. 93-127. ISBN: 978-81-969828-3-6
DOI: https://doi.org/10.52756/boesd.2024.e03.006
SHARE WITH EVERYONE