Chapter 7 : Marine Collagen: A Viable and Eco-Friendly Alternative in Pharmaceuticals

Marine Collagen: A Viable and Eco-Friendly Alternative in Pharmaceuticals

Maitrayee Banerjee Mukherjee
Assistant Professor, Department of Physiology, Krishnagar Government College, Krishnagar, Nadia
OrchideID Icon https://orcid.org/0009-0001-6533-8681

Published online:8 August, 2024

DOI: https://doi.org/10.52756/boesd.2024.e03.007

Keywords: Bone, Cartilage, Immunomodulatory, Marine collagen, Wound

Abstract:

Marine collagen, obtained from the by-products of aquatic invertebrates plays a significant role in several biomedical fields. It is essential for creating biomaterials used in tissue scaffolds, absorbable sutures and wound treatment matrices and for its applications in cosmetics and drug delivery systems. Marine species provide an ideal collagen source due to their lack of religious limitations and the absence of reported transmissible diseases. Studies indicate that collagen derived from fish possesses bioactive properties including regenerative, antioxidant, antibacterial, anti-inflammatory, and immunomodulatory effects along with the ability to inhibit angiotensin-converting enzyme activity. This review explores the scientific advancements surrounding collagen derived from marine organisms and fish by-products.

References:

  • Ahmed, Z., Powell, L. C., Matin, N., Mearns-Spragg, A., Thornton, C. A., Khan, I. M., & Francis, L. W. (2021). Jellyfish collagen: A biocompatible collagen source for 3D scaffold fabrication and enhanced chondrogenicity. Marine Drugs, 19(8), 405. https://doi.org/10.3390/md19080405
  • Ali, M. (2024). Exploring the Potency of Antiviral Marine Alkaloids Against Japanese encephalitis and Ebola virus: A Computational-Based Assessment for Drug Repurposing Applications. International Journal of Experimental Research and Review, 37(Special Vol.), 149-158. https://doi.org/10.52756/ijerr.2024.v37spl.013
  • Alves, A. L., Costa-Gouveia, J., Vieira de Castro, J., Sotelo, C. G., Vázquez, J. A., Pérez-Martín, R. I., Torrado, E., Neves, N., Reis, R. L., Castro, A. G., & Silva, T. H. (2022). Study of the immunologic response of marine-derived collagen and gelatin extracts for tissue engineering applications. Acta Biomaterialia, 141, 123-131. https://doi.org/10.1016/j.actbio.2022.01.009
  • Barzkar, N., Tamadoni Jahromi, S., Poorsaheli, H. B., & Vianello, F. (2019). Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Marine Drugs, 17(8), 464. https://doi.org/10.3390/md17080464
  • Bella, J., & Hulmes, D. J. (2017). Fibrillar collagens. Subcellular Biochemistry, 82, 457-490. https://doi.org/10.1007/978-3-319-49674-0_14
  • Bermueller, C., Schwarz, S., Elsaesser, A. F., Sewing, J., Baur, N., von Bomhard, A., Scheithauer, M., Notbohm, H., & Rotter, N. (2013). Marine collagen scaffolds for nasal cartilage repair: Prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Engineering Part A, 19(19-20), 2201-2214. https://doi.org/10.1089/ten.TEA.2012.0650
  • Blanco, M., Vázquez, J. A., Pérez-Martín, R. I., & Sotelo, C. G. (2017). Hydrolysates of fish skin collagen: An opportunity for valorizing fish industry byproducts. Marine Drugs, 15(5), 131. https://doi.org/10.3390/md15050131
  • Bourdon, B., Contentin, R., Cassé, F., Maspimby, C., Oddoux, S., Noël, A., Legendre, F., Gruchy, N., &Galéra, P. (2021). Marine collagen hydrolysates downregulate the synthesis of pro-catabolic and pro-inflammatory markers of osteoarthritis and favor collagen production and metabolic activity in equine articular chondrocyte organoids. International Journal of Molecular Sciences, 22(2), 580. https://doi.org/10.3390/ijms22020580
  • Chen, J., Gao, K., Liu, S., Wang, S., Elango, J., Bao, B., Dong, J., Liu, N., & Wu, W. (2019). Fish collagen surgical compress repairing characteristics on wound healing process in vivo. Marine Drugs, 17, 33. https://doi.org/10.3390/md17010033
  • Easterbrook, C., & Maddern, G. (2008). Porcine and bovine surgical products: Jewish, Muslim, and Hindu perspectives. Archives of Surgery, 143, 366-370. https://doi.org/10.1001/archsurg.143.4.366
  • Evans, M., Lewis, E. D., Zakaria, N., Pelipyagina, T., & Guthrie, N. (2021). A randomized, triple-blind, placebo-controlled, parallel study to evaluate the efficacy of a freshwater marine collagen on skin wrinkles and elasticity. Journal of Cosmetic Dermatology, 20, 825-834. https://doi.org/10.1111/jocd.13676
  • Geahchan, S., Baharlouei, P., & Rahman, A. (2022). Marine collagen: A promising biomaterial for wound healing, skin anti-aging, and bone regeneration. Marine Drugs, 20(1), 61. https://doi.org/10.3390/md20010061
  • Govindharaj, M., &Roopavath, U. K., & Rath, S. N. (2019). Valorization of discarded marine eel fish skin for collagen extraction as a 3D printable blue biomaterial for tissue engineering. Journal of Cleaner Production, 230, 412-419. https://doi.org/10.1016/j.jclepro.2019.05.082
  • Halfter, W., Dong, S., Schurer, B., & Cole, G. J. (1998). Collagen XVIII is a basement membrane heparan sulfate proteoglycan. Journal of Biological Chemistry, 273(39), 25404-25412. https://doi.org/10.1074/jbc.273.39.25404
  • Lim, Y. S., Ok, Y. J., Hwang, S. Y., Kwak, J. Y., & Yoon, S. (2019). Marine collagen as a promising biomaterial for biomedical applications. Marine Drugs, 17(8), 467. https://doi.org/10.3390/md17080467
  • Liu, C., & Sun, J. (2014). Potential application of hydrolyzed fish collagen for inducing the multidirectional differentiation of rat bone marrow mesenchymal stem cells. Biomacromolecules, 15, 436-443. https://doi.org/10.1021/bm401620m
  • Liu, C., & Sun, J. (2015). Hydrolyzed tilapia fish collagen induces osteogenic differentiation of human periodontal ligament cells. Biomedical Materials, 10(6), 065020. https://doi.org/10.1088/1748-6041/10/6/065020
  • Liu, C., & Sun, J. (2019). Osteogenically differentiated mesenchymal stem cells induced by hydrolyzed fish collagen maintain their immunomodulatory effects. Life Sciences, 238, 116970. https://doi.org/10.1016/j.lfs.2019.116970
  • Morishige, H., Sugahara, T., Nishimoto, S., Muranaka, A., Ohno, F., Shiraishi, R., & Doi, M. (2011). Immunostimulatory effects of collagen from jellyfish in vivo. Cytotechnology, 63(5), 481-492. https://doi.org/10.1007/s10616-011-9371-8
  • Mukherjee, P., Saha, A., Sen, K., Erfani, H., Madhu, N. R., & Sanyal, T. (2022). Conservation and prospects of indian lacustrine fisheries to reach the sustainable developmental goals (SDG 17). In N. R. Madhu (Ed.), A Basic Overview of Environment and Sustainable Development (1st ed., pp. 98–116). International Academic Publishing House (IAPH). https://doi.org/10.52756/boesd.2022.e01.010
  • Oslan, S. N. H., Li, C. X., Shapawi, R., Mokhtar, R. A. M., Noordin, W. N. M., & Huda, N. (2022). Extraction and characterization of bioactive fish by-product collagen as a promising potential wound healing agent in pharmaceutical applications: Current trend and future perspective. International Journal of Food Sciences, 2022, 9437878. https://doi.org/10.1155/2022/9437878
  • Raabe, O., Reich, C., Wenisch, S., Hild, A., Burg-Roderfeld, M., Siebert, H. C., & Arnhold, S. (2010). Hydrolyzed fish collagen induced chondrogenic differentiation of equine adipose tissue-derived stromal cells. Histochemistry and Cell Biology, 134(6), 545-554. https://doi.org/10.1007/s00418-010-0760-4
  • Saha, A. (2023). Circular Economy Strategies for Sustainable Waste Management in the Food Industry. Journal of Recycling Economy & Sustainability Policy2(2), 1–16. Retrieved from https://respjournal.com/index.php/pub/article/view/17
  • Sankarapandian, V., Jothirajan, B., Arasu, S. P., Subramaniam, S., & Venmathi Maran, B. A. (2023). Marine biotechnology and its applications in drug discovery. In Marine biotechnology: Applications in food, drugs and energy (pp. 189-208). Springer.
  • Sanyal, T., Saha, A., & Mukherjee, P. (2023). Activities of fisheries co-operative societies in India to boost up and optimise the resources and economy of farmers: A review. Journal of Fisheries, 11(2), 112301–112301. https://doi.org/10.17017/j.fish.487
  • Urzì, O., Gasparro, R., Costanzo, E., De Luca, A., Giavaresi, G., Fontana, S., & Alessandro, R. (2023). Three-dimensional cell cultures: The bridge between in vitro and in vivo models. International Journal of Molecular Sciences, 24(15), 12046. https://doi.org/10.3390/ijms241512046
  • Wang, J., Xu, M., Liang, R., Zhao, M., Zhang, Z., & Li, Y. (2015). Oral administration of marine collagen peptides prepared from chum salmon (Oncorhynchus keta) improves wound healing following cesarean section in rats. Food & Nutrition Research, 59, 26411. https://doi.org/10.3402/fnr.v59.26411
  • Yamada, S., Nagaoka, H., Terajima, M., Tsuda, N., Hayashi, Y., & Yamauchi, M. (2013). Effects of fish collagen peptides on bone metabolism in ovariectomized rats. The Journal of Nutritional Biochemistry, 24(3), 524-530. https://doi.org/10.1016/j.jnutbio.2012.02.002
  • Zhang, Y., Zhou, D., Chen, J., Zhang, X., Li, X., Zhao, W., & Xu, T. (2019). Biomaterials based on marine resources for 3D bioprinting applications. Marine Drugs, 17(10), 555. https://doi.org/10.3390/md17100555

check for update

A Basic Overview of Environment and Sustainable Development
[Volume: 3]

How to Cite
Maitrayee Banerjee Mukherjee(2024). Marine Collagen: A Viable and Eco-Friendly Alternative in Pharmaceuticals © International Academic Publishing House (IAPH), Dr. Nithar Ranjan Madhu, Dr. Tanmay Sanyal, Dr. Koushik Sen,Professor Biswajit (Bob) Ganguly and Professor Roger I.C. Hansell (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 3], pp. 128-136. ISBN: 978-81-969828-3-6
DOI: https://doi.org/10.52756/boesd.2024.e03.007

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device