A Brief Review on Solar Photovoltaic: A Key to Sustainable Development
Nirmalendu Hui
Department of Physics, Krishnagar Govt. College, Krishnagar, Nadia, West Bengal, India
Tanmay Sanyal
Department of Zoology, Krishnagar Govt. College, Krishnagar, Nadia, West Bengal, India
https://orcid.org/0000-0002-0046-1080
Raju Das
Assistant Secretary (Administration), West Bengal Council of Higher Secondary Education, Vidyasagar Bhavan, Karunamoyee Block DJ, Sector II, Salt Lake City Kolkata 700091, W.B., India
Published online:8 August, 2024
DOI: https://doi.org/10.52756/boesd.2024.e03.008
Keywords: Depletion layer, Photovoltaic, Semiconductor, Sustainable development
Abstract:
Taking urgent steps towards embracing green or renewable energy sources is essential to address the increasing energy demands and tackle the ongoing climate crisis. To advance society’s sustainable development, switching to solar energy is crucial due to its abundant availability and reliable, nearly limitless source, making it the most attractive option for an eco-friendly power source. Solar cells or photovoltaic devices are durable and reliable and can convert sunlight directly into electricity efficiently without producing noise or pollution. The popularity of solar panels depends on their cost, availability of raw materials, and efficiency. Currently, studies are underway to discover novel materials for solar photovoltaic devices. The objective is to find a system with high efficiency, lower cost, and improved durability. Current data ensure the worldwide progression of the use of solar cells and the increasing rate of efficiency improvement due to extended research.
References:
- Almosni, S., Delamarre, A., Jehl, Z., Suchet, D., Cojocaru, L., Giteau, M., Behaghel, B., Julian, A., Ibrahim, C., Tatry, L., Wang, H., Kubo, T., Uchida, S., Segawa, H., Miyashita, N., Tamaki, R., Shoji, Y., Yoshida, K., Ahsan, N., … Guillemoles, J.F. (2018). Material challenges for solar cells in the twenty-first century: Directions in emerging technologies. Science and Technology of Advanced Materials, 19(1), 336–369. https://doi.org/10.1080/14686996.2018.1433439
- Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 25(5), 676–677. https://doi.org/10.1063/1.1721711
- Chatterjee, S., Mukherjee, P., Saha, A., Sen, K., Das, R., & Sanyal, T. (2023). Utilizing climate physics: Advancing SDG 13 with integrated low carbon energy from diverse sources – a glimpse ahead. In A Basic Overview of Environment and Sustainable Development [Volume 2] (2nd ed., pp. 506–519). International Academic Publishing House (IAPH). https://doi.org/10.52756/boesd.2023.e02.031
- Gajbhiye, M., Kalbande, V., Bankar, A., Baseshankar, M., & Fande, A. (2024). Experimental Investigation of Two-Pass Solar Dryer with V-Corrugated Absorber for Potato Slice Drying. International Journal of Experimental Research and Review, 43(Spl Vol), 1–12. https://doi.org/10.52756/ijerr.2024.v43spl.001
- Gao, H., Yang, R., & Zhang, Y. (2020). Improving radiation resistance of gainp/gainas/ge triple-junction solar cells using gain back-surface field in the middle subcell. Materials, 13(8), 1958. https://doi.org/10.3390/ma13081958
- Green, M. A., Dunlop, E. D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., Hinken, D., Rauer, M., Hohl‐Ebinger, J., & Hao, X. (2024). Solar cell efficiency tables (Version 64). Progress in Photovoltaics: Research and Applications, 32(7), 425–441. https://doi.org/10.1002/pip.3831
- Hayat, M. B., Ali, D., Monyake, K. C., Alagha, L., & Ahmed, N. (2019). Solar energy-A look into power generation, challenges, and a solar-powered future. International Journal of Energy Research, 43(3), 1049–1067. https://doi.org/10.1002/er.4252
- Kalogirou, S. (2009). Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heaters. Solar Energy, 83(1), 39–48. https://doi.org/10.1016/j.solener.2008.06.005
- Luque López, A., & Hegedus, S. (Eds.). (2011). Handbook of photovoltaic science and engineering (2. ed., (fully rev. and updated)). Wiley.
- Nandwani, S. S. (1996). Solar cookers—Cheap technology with high ecological benefits. Ecological Economics, 17(2), 73–81. https://doi.org/10.1016/0921-8009(96)00021-3
- Mukherjee, P., Saha, A., Sen, K., Erfani, H., Madhu, N.R., & Sanyal, T. (2022). Conservation and prospects of Indian Lacustrine fisheries to reach the Sustainable Developmental Goals (SDG 17). © International Academic Publishing House (IAPH), Dr. N. R. Madhu & Dr. B. K. Behera (eds.), A Basic Overview of Environment and Sustainable Development, pp. 98-116. ISBN: 978-81-957954-2-0. https://doi.org/10.52756/boesd.2022.e01.010
- Peumans, P., Yakimov, A., & Forrest, S. R. (2003). Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 93(7), 3693–3723. https://doi.org/10.1063/1.1534621
- Saga, T. (2010). Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Materials, 2(3), 96–102. https://doi.org/10.1038/asiamat.2010.82
- Singh, M., Solanki, S., Agrawal, B., & Bhargava, R. (2024). Performance Evaluation and Cost Analysis of Photovoltaic Thermal (PVT) System Using the Triangular Shape of Absorber with Different Water-based Nanofluids as Coolants. International Journal of Experimental Research and Review, 39(Spl Volume), 51-72. https://doi.org/10.52756/ijerr.2024.v39spl.004
- Suman, Sharma, P., & Goyal, P. (2020). Evolution of PV technology from conventional to nano-materials. Materials Today: Proceedings, 28, 1593–1597. https://doi.org/10.1016/j.matpr.2020.04.846
- Tucker, M. (1999). Can solar cooking save the forests? Ecological Economics, 31(1), 77–89. https://doi.org/10.1016/S0921-8009(99)00038-5
- Węgierek, P., & Billewicz, P. (2011). Jump mechanism of electric conduction in n-type silicon implanted with ne ++ neon ions. Acta Physica Polonica A, 120(1), 122–124. https://doi.org/10.12693/APhysPolA.120.122
- Węgierek, P., & Billewicz, P. (2013). Research on mechanisms of electric conduction in the p-type silicon implanted with ne + ions. Acta Physica Polonica A, 123(5), 948–951. https://doi.org/10.12693/APhysPolA.123.948
- Wentzel, M., & Pouris, A. (2007). The development impact of solar cookers: A review of solar cooking impact research in South Africa. Energy Policy, 35(3), 1909–1919. https://doi.org/10.1016/j.enpol.2006.06.002
- Wu, C., Wang, K., Batmunkh, M., Bati, A. S. R., Yang, D., Jiang, Y., Hou, Y., Shapter, J. G., & Priya, S. (2020). Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy, 70, 104480. https://doi.org/10.1016/j.nanoen.2020.104480
- Yadav, R., Gautam, A., & Pradeepa, P. (2023). Design, Performance and Economic evaluation of a 4kW Grid-interactive Solar PV Rooftop in Odisha using Pvsyst. Int. J. Exp. Res. Rev., 31(Spl Volume), 98-107. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.010
- Ya’u Muhammad, J., Bello Waziri, A., Muhammad Shitu, A., Muhammad Ahmad, U., Hassan Muhammad, M., Alhaji, Y., Taofeek Olaniyi, A., & Abdulkadir Bala, A. (2019). Recent progressive status of materials for solar photovoltaic cell: A comprehensive review. Science Journal of Energy Engineering, 7(4), 77. https://doi.org/10.11648/j.sjee.20190704.14
How to Cite
Nirmalendu Hui1, Tanmay Sanyal and Raju Das (2024). A Brief Review on Solar Photovoltaic: A Key to Sustainable Development © International Academic Publishing House (IAPH), Dr. Nithar Ranjan Madhu, Dr. Tanmay Sanyal, Dr. Koushik Sen, Professor Biswajit (Bob) Ganguly and Professor Roger I.C. Hansell (eds.), A Basic Overview of Environment and Sustainable Development [Volume: 3], pp. 137-151. ISBN: 978-81-969828-3-6
DOI: https://doi.org/10.52756/boesd.2024.e03.008
SHARE WITH EVERYONE