Chemoresistance of Cervical Cancer Stem Cells: Challenges and Prospects

Susmita Mondal
Department of Zoology, Diamond Harbour Women’s University, Sarisha, West Bengal, India

Sutapa Saha
Department of Zoology, Diamond Harbour Women’s University, Sarisha, West Bengal, India

Saptarshi Chatterjee
Department of Zoology, University of Burdwan, Bardhaman, West Bengal, India

Biplab Bhowmik
Department of Zoology, Diamond Harbour Women’s University, Sarisha, West Bengal, India

DOI: https://doi.org/10.52756/lbsopf.2024.e01.016

Keywords: Cancer stem cells, Cervical cancer, Chemoresistance, Human papilloma virus (HPV), Self-renewal, Tumour microenvironment

Abstract:
Cervical cancer (CC) is one of the leading causes of death among women, with thousands of women diagnosed each year, particularly in developing countries where access to healthcare resources may be limited. Persistent infection with high-risk human papillomavirus (HPV) induces CC. While advancements in treatment modalities, such as chemotherapy, have improved outcomes for many patients, a significant challenge remains in the form of chemoresistance, particularly in the context of cervical cancer stem cells (cCSCs). cCSCs are a small subpopulation of cells within CC with self-renewal and aberrant differentiation capacity. Upregulation of biomarkers expression such as CD44, CD133, Sox2, ALDH1 and etc. is often associated with robustness of cCSCs. cCSCs possess higher invasion, metastasis and drug resistance ability thereby leading to poor prognosis and relapse. Therapeutic strategies to manage advanced CC typically involve surgery, radiotherapy and chemotherapy mostly using platinum-based drugs. However, acquired chemoresistance of cCSCs is the biggest challenge to therapeutic outcomes. There are several mechanisms involved in chemotherapy resistance in cCSCs, such as enhanced DNA damage repair mechanisms, which include nucleotide excision repair and homologous recombination, and promoting survival pathways like PI3K/AKT, Wnt, Notch. Elevated drug transporters like ABCG2 are one of the key feature for the resistance phenotype of cCSCs. Furthermore, epigenetic modulation and mutual interaction of cCSCs with tumour microenvironment play crucial role to avoid chemotherapeutic damage. This chapter aims to explore the mechanisms underlying chemoresistance in cCSCs and discuss potential therapeutic strategies to overcome this challenge.

References:

  • Alisi, A., Cho, W. C., Locatelli, F., & Fruci, D. (2013). Multidrug resistance and cancer stem cells in neuroblastoma and hepatoblastoma. International journal of molecular sciences14(12), 24706–24725. https://doi.org/10.3390/ijms141224706
  • Bailly, C., Thuru, X., & Quesnel, B. (2020). Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR cancer2(1), zcaa002. https://doi.org/10.1093/narcan/zcaa002
  • Bhatla, N., Aoki, D., Sharma, D. N., & Sankaranarayanan, R. (2018). Cancer of the cervix uteri. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics143 Suppl 2, 22–36. https://doi.org/10.1002/ijgo.12611
  • Burmeister, C. A., Khan, S. F., Schäfer, G., Mbatani, N., Adams, T., Moodley, J., & Prince, S. (2022). Cervical cancer therapies: Current challenges and future perspectives. Tumour virus research13, 200238. https://doi.org/10.1016/j.tvr.2022.200238
  • Chan, C. K., Aimagambetova, G., Ukybassova, T., Kongrtay, K., & Azizan, A. (2019). Human Papillomavirus Infection and Cervical Cancer: Epidemiology, Screening, and Vaccination-Review of Current Perspectives. Journal of oncology2019, 3257939. https://doi.org/10.1155/2019/3257939
  • Das, J., Das, M., Doke, M., Wnuk, S., Stiffin, R., Ruiz, M., & Celli, J. (2021). A small molecule inhibits pancreatic cancer stem cells. Int. J. Exp. Res. Rev., 26, 1-15. https://doi.org/10.52756/ijerr.2021.v26.001
  • Di Fiore, R., Suleiman, S., Drago-Ferrante, R., Subbannayya, Y., Pentimalli, F., Giordano, A., & Calleja-Agius, J. (2022). Cancer Stem Cells and Their Possible Implications in Cervical Cancer: A Short Review. International journal of molecular sciences23(9), 5167. https://doi.org/10.3390/ijms23095167
  • Duenas-Gonzalez, A., & Gonzalez-Fierro, A. (2019). Pharmacodynamics of current and emerging treatments for cervical cancer. Expert opinion on drug metabolism & toxicology15(8), 671–682. https://doi.org/10.1080/17425255.2019.1648431
  • Fan, Q., Qiu, M. T., Zhu, Z., Zhou, J. H., Chen, L., Zhou, Y., Gu, W., Wang, L. H., Li, Z. N., Xu, Y., Cheng, W. W., Wu, D., & Bao, W. (2015). Twist induces epithelial-mesenchymal transition in cervical carcinogenesis by regulating the TGF-β/Smad3 signaling pathway. Oncology reports, 34(4), 1787–1794. https://doi.org/10.3892/or.2015.4143
  • French, R., & Pauklin, S. (2021). Epigenetic regulation of cancer stem cell formation and maintenance. International journal of cancer148(12), 2884–2897. https://doi.org/10.1002/ijc.33398
  • Gillespie, M. S., Ward, C. M., & Davies, C. C. (2023). DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers15(6), 1897. https://doi.org/10.3390/cancers15061897
  • Heddleston, J. M., Li, Z., Lathia, J. D., Bao, S., Hjelmeland, A. B., & Rich, J. N. (2010). Hypoxia inducible factors in cancer stem cells. British journal of cancer102(5), 789–795. https://doi.org/10.1038/sj.bjc.6605551
  • Huang, R., & Rofstad, E. K. (2017). Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget8(21), 35351–35367. https://doi.org/10.18632/oncotarget.10169
  • Huang, Z., Wu, T., Liu, A. Y., & Ouyang, G. (2015). Differentiation and transdifferentiation potentials of cancer stem cells. Oncotarget6(37), 39550–39563. https://doi.org/10.18632/oncotarget.6098
  • Hull, R., Mbele, M., Makhafola, T., Hicks, C., Wang, S. M., Reis, R. M., Mehrotra, R., Mkhize-Kwitshana, Z., Kibiki, G., Bates, D. O., & Dlamini, Z. (2020). Cervical cancer in low and middle-income countries. Oncology letters20(3), 2058–2074. https://doi.org/10.3892/ol.2020.11754
  • Khan, M. J., & Smith-McCune, K. K. (2014). Treatment of cervical precancers: back to basics. Obstetrics and gynecology123(6), 1339–1343. https://doi.org/10.1097/AOG.0000000000000287
  • Madhu, N.R., Sarkar, B., Biswas, P., Roychoudhury, S., Behera, B.K., & Acharya, C.K. (2023). Therapeutic potential of melatonin in glioblastoma: Current knowledge and future prospects. Biomarkers in Cancer Detection and Monitoring of Therapeutics, Volume-2. Elsevier Inc., pp. 371-386. ISBN 978-0-323-95114-2. https://doi.org/10.1016/B978-0-323-95114-2.00002-9
  • Madhu, N.R., Sarkar, B., Roychoudhury, S., Behera, B.K. (2022). Melatonin Induced in Cancer as a Frame of Zebrafish Model. © Springer Nature Singapore Pte Ltd. 2022, S. Pathak et al. (eds.), Handbook of Animal Models and its Uses in Cancer Research, pp. 1-18. ISBN: 978-981-19-1282-5 https://doi.org/10.1007/978-981-19-1282-5_61-1
  • Manni, W., & Min, W. (2022). Signalling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm3(4), e176. https://doi.org/10.1002/mco2.176
  • Martin-Hirsch, P. L., & Wood, N. J. (2011). Cervical cancer. BMJ clinical evidence2011, 0818.
  • Marzagalli, M., Fontana, F., Raimondi, M., & Limonta, P. (2021). Cancer Stem Cells-Key Players in Tumor Relapse. Cancers13(3), 376. https://doi.org/10.3390/cancers13030376
  • Muralikrishnan, V., Hurley, T. D., & Nephew, K. P. (2020). Targeting Aldehyde Dehydrogenases to Eliminate Cancer Stem Cells in Gynecologic Malignancies. Cancers12(4), 961. https://doi.org/10.3390/cancers12040961
  • Navaei, Z. N., Khalili-Tanha, G., Zangouei, A. S., Abbaszadegan, M. R., & Moghbeli, M. (2022). PI3K/AKT signalling pathway as a critical regulator of Cisplatin response in tumor cells. Oncology research29(4), 235–250. https://doi.org/10.32604/or.2022.025323
  • Organista-Nava, J., Gómez-Gómez, Y., Garibay-Cerdenares, O. L., Leyva-Vázquez, M. A., & Illades-Aguiar, B. (2019). Cervical cancer stem cell-associated genes: Prognostic implications in cervical cancer. Oncology letters18(1), 7–14. https://doi.org/10.3892/ol.2019.10307
  • Phi, L. T. H., Sari, I. N., Yang, Y. G., Lee, S. H., Jun, N., Kim, K. S., Lee, Y. K., & Kwon, H. Y. (2018). Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem cells international2018, 5416923. https://doi.org/10.1155/2018/5416923
  • Prasetyanti, P. R., & Medema, J. P. (2017). Intra-tumor heterogeneity from a cancer stem cell perspective. Molecular cancer16(1), 41. https://doi.org/10.1186/s12943-017-0600-4
  • Qureshi, R., Arora, H., & Rizvi, M. A. (2015). EMT in cervical cancer: its role in tumour progression and response to therapy. Cancer letters356(2 Pt B), 321–331. https://doi.org/10.1016/j.canlet.2014.09.021
  • Saito, S., Ku, C. C., Wuputra, K., Pan, J. B., Lin, C. S., Lin, Y. C., Wu, D. C., & Yokoyama, K. K. (2022). Biomarkers of Cancer Stem Cells for Experimental Research and Clinical Application. Journal of personalized medicine12(5), 715. https://doi.org/10.3390/jpm12050715
  • Shu, X. R., Wu, J., Sun, H., Chi, L. Q., & Wang, J. H. (2015). PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway. Diagnostic pathology10, 177. https://doi.org/10.1186/s13000-015-0404-z
  • Shukla, S., Ohnuma, S., & Ambudkar, S. V. (2011). Improving cancer chemotherapy with modulators of ABC drug transporters. Current drug targets12(5), 621–630. https://doi.org/10.2174/138945011795378540
  • Singh, D., Vignat, J., Lorenzoni, V., Eslahi, M., Ginsburg, O., Lauby-Secretan, B., Arbyn, M., Basu, P., Bray, F., & Vaccarella, S. (2023). Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. The Lancet. Global health11(2), e197–e206. https://doi.org/10.1016/S2214-109X(22)00501-0
  • Singh, M., Jha, R. P., Shri, N., Bhattacharyya, K., Patel, P., & Dhamnetiya, D. (2022). Secular trends in incidence and mortality of cervical cancer in India and its states, 1990-2019: data from the Global Burden of Disease 2019 Study. BMC cancer22(1), 149. https://doi.org/10.1186/s12885-022-09232-w
  • Sravani, A.B., Ghate, V. & Lewis, S. Human papillomavirus infection, cervical cancer and the less explored role of trace elements. Biol Trace Elem Res 201, 1026–1050 (2023). https://doi.org/10.1007/s12011-022-03226-2
  • Yao, T., Weng, X., Yao, Y., Huang, C., Li, J., Peng, Y., Lin, R., & Lin, Z. (2020). ALDH-1-positive cells exhibited a radioresistant phenotype that was enhanced with hypoxia in cervical cancer. BMC cancer20(1), 891. https://doi.org/10.1186/s12885-020-07337-8
  • Zhang, X., Lv, Z., Xu, X., Yin, Z., & Lou, H. (2020). Comparison of adenocarcinoma and adenosquamous carcinoma prognoses in Chinese patients with FIGO stage IB-IIA cervical cancer following radical surgery. BMC cancer, 20(1), 664. https://doi.org/10.1186/s12885-020-07148-x
  • Zhou, H. M., Zhang, J. G., Zhang, X., & Li, Q. (2021). Targeting cancer stem cells for reversing therapy resistance: mechanism, signalling, and prospective agents. Signal transduction and targeted therapy6(1), 62. https://doi.org/10.1038/s41392-020-00430-1 Zhu, H., Luo, H., Zhang, W., Shen, Z., Hu, X., & Zhu, X. (2016). Molecular mechanisms of cisplatin resistance in cervical cancer. Drug design, development and therapy10, 1885–1895. https://doi.org/10.2147/DDDT.S106412
Cover image of the book "Life as Basic Science: an overview and prospects for the future, Vol. 1" featuring DNA strands, human anatomy, marine life, plants, and nutritional supplements.
Life as Basic Science: an overview and prospects for the future, Vol. 1

How to Cite
Susmita Mondal, Sutapa Saha, Saptarshi Chatterjee and Biplab Bhowmik (2024). Chemoresistance of Cervical Cancer Stem Cells: Challenges and Prospects. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Ashis Kumar Panigrahi, Dr. Rose Stiffin and Dr. Jayata Kumar Das (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 1, pp. 197-207. ISBN: 978-81-969828-9-8 doi: https://doi.org/10.52756/lbsopf.2024.e01.016

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device