Exploring the Potent Anticancer Activity of Andrographis paniculata (Kalmegh): Mechanisms, Applications and Therapeutic Implications

Avijit Chakraborty
Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, India

Shamim Hossain Mandal
Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, India

Soumik Debnath
Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, India

Jaya Bandyopadhyay
Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, India

DOI: https://doi.org/10.52756/lbsopf.2024.e01.001

Keywords: Anticancer, Andrographolide, cancer, drug, medicinal plant, bioactive compound

Abstract:
Despite advancements in therapeutic approaches, cancer appears to be biggest cause of death globally. Consequently, the primary focus should be on early cancer detection, developing the best possible treatment plan to extend the patient’s life, and continuing the hunt for more potent and targeted drugs to treat various cancer types. Stronger anti-cancer drugs have been developed as a result of the current change in natural chemical research towards sophisticated and molecular-level understandings. Infertility, ovarian failure, liver, renal, and heart toxicity, as well as immunosuppressive side effects, are some of the adverse consequences of synthetic medications used in cancer treatment. Consequently, herbal medications may be utilised as an adjuvant therapy in the treatment of cancer. Different plant derived drugs are under research. Among the different medicinal plants, Andrographis paniculata (Burm. F) Nees, an herbaceous plant of the Acanthaceae family, is often referred to as the “king of bitters,” plays an important role in the treatment of cancer. This plant is commonly used in India, China, Malaysia, and Thailand to treat sore throat, flu, and upper respiratory tract infections. This plant is rich in bioactive compounds. Andrographolide is widely regarded as a vital bioactive component of A. paniculata. Andrographolide has a highly bitter taste, is colourless, and is crystalline in appearance. Analgesic, antipyretic, anti-viral, antimalarial, anti-hyperglycemic, hepatoprotective, immunological modulatory, protective against alcohol-induced toxicity, cardiac protective action, and anti-cancer activity are just a few of the many potentials for andrographolide. It is reported that when andrographolide is treated on different cancer cells it possesses anticancer activity.

References:

  • Adiguna, S. P., Panggabean, J. A., Atikana, A., Untari, F., Izzati, F. N., Bayu, A., Rosyidah, A., Rahmawati, S. I., & Putra, M. Y. (2021). Antiviral activities of andrographolide and its derivatives: mechanism of action and delivery system. Pharmaceuticals, 14(11), 1102. https://doi.org/10.3390/ph14111102
  • Adiguna, S. P., Panggabean, J. A., Swasono, R. T., Rahmawati, S. I., Izzati, F. N., Bayu, A., Putra, M. Y., Formisano, C., & Chianese, G. (2023). Evaluations of Andrographolide-Rich Fractions of Andrographis paniculata with Enhanced Potential Antioxidant, Anticancer, Antihypertensive, and Anti-Inflammatory Activities. Plants, 12(6), 1220. https://doi.org/10.3390/plants12061220
  • Bhattacharjee, P., & Mukherjee, S. (2016). A Review of MicroRNA in Carcinogenesis. Int. J. Exp. Res. Rev., 8, 59-65
  • Bhat, M. A., & Murthy, H. N. (2021). Isolation of Andrographolide from Andrographis lineata Wall. ex Nees var. lawii C.B. Clarke and its Anticancer Activity against Human Ovarian Teratocarcinoma. Pharmacognosy Journal, 13(3), 660–668. https://doi.org/10.5530/pj.2021.13.84
  • Boga, I., & Bisgin, A. (2022). Real-world applications of tumor mutation burden (TMB) analysis using ctDNA and FFPE samples in various cancer types of Turkish population. Int. J. Exp. Res. Rev., 29, 89-93. https://doi.org/10.52756/ijerr.2022.v29.010
  • Campbell, P. J., Getz, G., Korbel, J. O., Stuart, J. M., Jennings, J. L., Stein, L., Perry, M. D., Nahal-Bose, H. K., Ouellette, B. F. F., Li, C. H., Rheinbay, E., Nielsen, G. P., Sgroi, D., Wu, C., Faquin, W. C., Deshpande, V., Boutros, P. C., Lazar, A. J., Hoadley, K. A., . . . Zhang, J. (2020). Pan-cancer analysis of whole genomes. Nature, 578(7793), 82–93. https://doi.org/10.1038/s41586-020-1969-6
  • Chakrovorty, A., Bhattacharjee, B., Dey, R., Samadder, A., & Nandi, S. (2021). Graphene: the magic carbon derived biological weapon for human welfare. Int. J. Exp. Res. Rev.25, 9-17. https://doi.org/10.52756/ijerr.2021.v25.002
  • Chao, W.W., Kuo, Y.H., & Lin, B.F. (2010). Anti-inflammatory Activity of New Compounds from Andrographis paniculata by NF-κB Trans-Activation inhibition. J. Agric Food. Chem., 58, 2505-2512. 10.1021/jf903629j.
  • Chao, WW., Lin, BF. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin. Med., 5, 17 (2010). https://doi.org/10.1186/1749-8546-5-17
  • Chaudhry, G., Akim, A. M., Sung, Y. Y., & Sifzizul, T. M. T. (2022). Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Frontiers in Pharmacology, 13, https://doi.org/10.3389/fphar.2022.842376
  • Chauhan, Ekta & Sharma, Kriti & Bist, Renu. (2019). Andrographis paniculata : A Review of its Phytochemistry and Pharmacological Activities. Research Journal of Pharmacy and Technology, 12, 891. 10.5958/0974-360X.2019.00153.7.
  • Dai, J., Lin, Y., Duan, Y., Li, Z., Zhou, D., Chen, W., Wang, L., & Zhang, Q. (2017). Andrographolide inhibits angiogenesis by inhibiting the MIR-21-5P/TIMP3 signaling pathway. International Journal of Biological Sciences, 13(5), 660–668. https://doi.org/10.7150/ijbs.19194
  • Dandekar, P. M., Kotwal, P. C., Pathan, A. C., & Sheikh, A. Y. (2024). Review on Evaluation of phytochemical analysis of Kalmegh (Andrographis paniculata) leaf Extract. International Journal of Advanced Research in Science, Communication and Technology, 292–305. https://doi.org/10.48175/ijarsct-15045
  • Das, J., Das, M., Doke, M., Wnuk, S., Stiffin, R., Ruiz, M., & Celli, J. (2021). A small molecule inhibits pancreatic cancer stem cells. Int. J. Exp. Res. Rev.26, 1-15. https://doi.org/10.52756/ijerr.2021.v26.001
  • Devendar, P., Nayak, V. L., Yadav, D. K., Kumar, A., Kumar, J. K., Srinivas, K. S., Sridhar, B., Khan, F., Sastry, K. P., & Sistla, R. (2015). Synthesis and evaluation of anticancer activity of novel andrographolide derivatives. MedChemComm, 6(5), 898–904. https://doi.org/10.1039/c4md00566j
  • Dey-Ray, S., Dutta, S., Sengupta, P., Madhu, N.R., Das, N., Ray, S., Kolesarova, A., & Roychoudhury, S. (2024). Elucidation of anti-inflammatory activity of a new cyclic alkaloid compound from root bark of Ziziphus nummularia (Aubrev.): in vitro, in silico and in vivo studies. Journal of Microbiology, Biotechnology and Food Sciences, 13(5), e10564. (ISSN 1338-5178). https://doi.org/10.55251/jmbfs.10564
  • Dötsch, V., Bernassola, F., Coutandin, D., Candi, E., & Melino, G. (2010). p63 and p73, the Ancestors of p53. Cold Spring Harbor Perspectives in Biology, 2(9), a004887. https://doi.org/10.1101/cshperspect.a004887
  • He, H., Shao, X., Li, Y., Gihu, R., Xie, H., Zhou, J., & Yan, H. (2021). Targeting signaling pathway networks in several malignant tumors: progresses and challenges. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.675675
  • Hossain, M. S., Urbi, Z., Karuniawati, H., Mohiuddin, R. B., Qrimida, A. M., Allzrag, A. M. M., Ming, L. C., Pagano, E., & Capasso, R. (2021). Andrographis paniculata (Burm. f.) Wall. ex Nees: An Updated Review of Phytochemistry, Antimicrobial Pharmacology, and Clinical Safety and Efficacy. Life, 11(4), 348. https://doi.org/10.3390/life11040348
  • Hossain, M. S., Urbi, Z., Sule, A., & Rahman, K. (2014). Andrographis paniculata (Burm. f.) Wall. ex Nees: A Review of Ethnobotany, Phytochemistry, and Pharmacology. The Scientific World Journal, 2014, 1–28. https://doi.org/10.1155/2014/274905
  • Janků, F., Hong, D. S., Fu, S., Piha-Paul, S. A., Naing, A., Falchook, G. S., Tsimberidou, A. M., Stepanek, V. M., Moulder, S. L., Lee, J., Luthra, R., Zinner, R., Broaddus, R. R., Wheler, J. J., & Kurzrock, R. (2014). Assessing PIK3CA and PTEN in Early-Phase Trials with PI3K/AKT/mTOR Inhibitors. Cell Reports, 6(2), 377–387. https://doi.org/10.1016/j.celrep.2013.12.035
  • Kaur, P. (2023). Performance and Accuracy Enhancement During Skin Disease Detection in Deep Learning. Int. J. Exp. Res. Rev., 35, 96-108. https://doi.org/10.52756/ijerr.2023.v35spl.009
  • Kesavan, Y., Sahabudeen, S., & Ramalingam, S. (2023). Exosomes Derived from Metastatic Colon Cancer Cells Induced Oncogenic Transformation and Migratory Potential of Immortalized Human Cells. Int. J. Exp. Res. Rev.36, 37-46. https://doi.org/10.52756/ijerr.2023.v36.003
  • Kulkarni, N., Tank, S., Korlekar, P., Shidhaye, S., & Barve, P. (2023). A review of gene mutations, conventional testing and novel approaches to cancer screening. Int. J. Exp. Res. Rev.30, 134-162. https://doi.org/10.52756/ijerr.2023.v30.015
  • Kuruppu, A. I., Paranagama, P., & Goonasekara, C. L. (2019). Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 27(4), 565–573. https://doi.org/10.1016/j.jsps.2019.02.004
  • Madhu, N.R., Sarkar, B., Biswas, P., Roychoudhury, S., Behera, B.K., & Acharya, C.K. (2023). Therapeutic potential of melatonin in glioblastoma: Current knowledge and future prospects. Biomarkers in Cancer Detection and Monitoring of Therapeutics, Volume-2. Elsevier Inc., pp. 371-386. ISBN 978-0-323-95114-2. https://doi.org/10.1016/B978-0-323-95114-2.00002-9
  • Madhu, N.R., Sarkar, B., Roychoudhury, S., Behera, B.K. (2022). Melatonin Induced in Cancer as a Frame of Zebrafish Model. © Springer Nature Singapore Pte Ltd. 2022, S. Pathak et al. (eds.), Handbook of Animal Models and its Uses in Cancer Research, pp. 1-18. ISBN: 978-981-19-1282-5 https://doi.org/10.1007/978-981-19-1282-5_61-1
  • Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C., Gouvin, L. M., Sharma, V. M., & Mercurio, A. M. (2010). ERΒ impedes prostate cancer EMT by destabilizing HIF-1Α and inhibiting VEGF-Mediated Snail Nuclear Localization: Implications for Gleason Grading. Cancer Cell, 17(4), 319–332.
  • https://doi.org/10.1016/j.ccr.2010.02.030
  • Marei, H. E., Althani, A., Afifi, N., Hasan, A., Caceci, T., Pozzoli, G., Morrione, A., Giordano, A., & Cenciarelli, C. (2021). p53 signaling in cancer progression and therapy. Cancer Cell International, 21(1). https://doi.org/10.1186/s12935-021-02396-8
  • Mehta, V., Dey, A., Thakkar, N., Prabhakar, K., Jothimani, G., & Banerjee, A. (2023). Anti-cancer Properties of Dietary Supplement CELNORM against Colon and Lung Cancer: An in vitro preliminary study. Int. J. Exp. Res. Rev.32, 1-14. https://doi.org/10.52756/ijerr.2023.v32.001
  • Mishra, V., Mishra, M., Sheetlani, J., Kumar, A., Pachouri, P., Nagapraveena, T., Puttamallaiah, A., Sravya, M., & Parijatha, K. (2023). The Classification and Segmentation of Pneumonia using Deep Learning Algorithms: A Comparative Study. Int. J. Exp. Res. Rev.36, 76-88. https://doi.org/10.52756/ijerr.2023.v36.007
  • Mussard, E., Jousselin, S., Césaro, A., Legrain, B., Lespessailles, É., Estève, É., Berteina‐Raboin, S., & Toumi, H. (2020). Andrographis paniculata and Its Bioactive Diterpenoids Protect Dermal Fibroblasts against Inflammation and Oxidative Stress. Antioxidants, 9(5), 432. https://doi.org/10.3390/antiox9050432
  • Pons‐Tostivint, E., Thibault, B., & Guillermet-Guibert, J. (2017). Targeting PI3K signaling in combination cancer therapy. Trends in Cancer, 3(6), 454–469. https://doi.org/10.1016/j.trecan.2017.04.002
  • Rami, N., Kulkarni, B., Chibber, S., Jhala, D., Parmar, N., & Trivedi, K. (2023). In vitro antioxidant and anticancer potential of Annona squamosa L. Extracts against breast cancer. Int. J. Exp. Res. Rev.30, 264-275. https://doi.org/10.52756/ijerr.2023.v30.024
  • Saha, A., & Yadav, R. (2023). Study on segmentation and prediction of lung cancer based on machine learning approaches. Int. J. Exp. Res. Rev.30, 1-14. https://doi.org/10.52756/ijerr.2023.v30.001
  • Sarkar, B., Kotal, H.N., Giri, C.K., Mandal, A., Hudait, N., Madhu, N.R., Saha, S., Basak, S.K., Sengupta, J., & Ray, K. (2024). Detection of a bibenzyl core scaffold in 28 common mangrove and associate species of the Indian Sundarbans: potential signature molecule for mangrove salinity stress acclimation. Front. Plant Sci., 14, 1291805. (ISSN: 1664-462X). https://doi.org/10.3389/fpls.2023.1291805
  • Saxena, R.C., Singh, R., Kumar, P., Yadav, S.C., Negi, M.P.S., Saxena, V.S., Joshua, A.J., Vijayabalaji, V., Goudar, K.S., Venkateshwarlu, K. (2010). A Randomized Double Blind Placebo Controlled Clinical Evaluation of Extract of Andrographis paniculata (KalmCold™) in Patients with Uncomplicated Upper Respiratory Tract Infection. Phytomedicine, 17, 178–185.
  • Scartezzini, P., & Speroni, E. (2000). Review on some plants of Indian traditional medicine with antioxidant activity. Journal of Ethnopharmacology, 71(1–2), 23–43. https://doi.org/10.1016/s0378-8741(00)00213-0
  • Sarma, M. (2016). Cancer therapy with Vinca Alkaloids. Int. J. Exp. Res. Rev.7, 38-43.
  • Shi, M., Lin, H., Lee, Y., Chao, J., Lin, R., & Chen, J. (2008). Inhibition of cell-cycle progression in human colorectal carcinoma Lovo cells by andrographolide. Chemico-Biological Interactions, 174(3), 201–210. https://doi.org/10.1016/j.cbi.2008.06.006
  • Suriyo, T., Chotirat, S., Rangkadilok, N., Pholphana, N., & Satayavivad, J. (2021). Interactive Effects of Andrographis paniculata Extracts and Cancer Chemotherapeutic 5-Fluorouracil on Cytochrome P450s Expression in Human Hepatocellular Carcinoma HepG2 Cells. J. Herb. Med., 26, 100421.
  • Tan, M. L., Tan, H. K., Oon, C. E., Kuroyanagi, M., and Muhammad, T. S. (2012). Identification of Genes Involved in the Regulation of 14-Deoxy-11,12-Didehydroandrographolide-Induced Toxicity in T-47D Mammary Cells. Food Chem. Toxicol. 50, 431–444. doi:10.1016/j.fct.2011.11.001
  • Tundis, R., Patra, J. K., Bonesi, M., Das, S., Nath, R., Talukdar, A. D., Das, G., & Loizzo, M. R. (2023). Anti-Cancer agent: the Labdane Diterpenoid-Andrographolide. Plants, 12(10), 1969. https://doi.org/10.3390/plants12101969
  • Varma, A., Padh, H., & Shrivastava, N. (2011). Andrographolide: a new Plant-Derived antineoplastic entity on horizon. Evidence-based Complementary and Alternative Medicine, 2011, 1–9. https://doi.org/10.1093/ecam/nep135
  • Wang, S., Li, H., Chen, S., Wang, Z., Yao, Y., Chen, T., Ye, Z., & Lin, P. (2020). Andrographolide induces apoptosis in human osteosarcoma cells via the ROS/JNK pathway. International Journal of Oncology. https://doi.org/10.3892/ijo.2020.5032
  • Yadav, R. P., Sadhukhan, S., Saha, M., Ghosh, S., & Das, M. (2022). Exploring the mechanism of andrographolide in the treatment of gastric cancer through network pharmacology and molecular docking. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-18319-0
  • Yip, H. Y. K., & Papa, A. (2021). Signaling pathways in cancer: therapeutic targets, combinatorial treatments, and new developments. Cells, 10(3), 659. https://doi.org/10.3390/cells10030659
  • You, M., Xie, Z., Zhang, N., Zhang, Y., Xiao, D., Liu, S., Zhuang, W., Li, L. L., & Tao, Y. (2023). Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-023-01442-3
  • Zeng, B., Wei, A., Zhou, Q., Yuan, M., Lei, K., Liu, Y., Song, J. S., Guo, L., & Ye, Q. (2021). Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytotherapy Research, 36(1), 336–364. https://doi.org/10.1002/ptr.7324
  • Zhang, H., Li, S., Si, Y., & Xu, H. (2021). Andrographolide and its derivatives: Current achievements and future perspectives. European Journal of Medicinal Chemistry, 224, 113710. https://doi.org/10.1016/j.ejmech.2021.113710 Zhang, J., Sun, Y., Zhong, L.Y., Yu, N.N., Ouyang, L., Fang, R.D., Wang, Y., & He, Q.Y. (2020). Structure-Based Discovery of Neoandrographolide as a Novel Inhibitor of Rab5 to Suppress Cancer Growth. Comput. Struct. Biotechnol. J., 18, 3936–3946.
Life as Basic Science: An Overview and Prospects for the Future
Volume: 1

How to Cite
Avijit Chakraborty, Shamim Hossain Mandal, Soumik Debnath and Jaya Bandyopadhyay (2024). Exploring the Potent Anticancer Activity of Andrographis paniculata (Kalmegh): Mechanisms, Applications, and Therapeutic Implications. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Ashis Kumar Panigrahi, Dr. Rose Stiffin and Dr. Jayata Kumar Das (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 1, pp. 1-16. ISBN: 978-81-969828-9-8 doi: https://doi.org/10.52756/lbsopf.2024.e01.001

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device