Unveiling the Potentials of Withania somnifera (L.) Dunal as a Precise Therapeutic Intervention Against Glioblastoma Multiforme

Sohini Kulavi
Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH-12 (Old NH-34), Simhat, Haringhata, Nadia, West Bengal, India

Debajit Dhar
Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH-12 (Old NH-34), Simhat, Haringhata, Nadia, West Bengal, India

Karan Iyer
Sustainable Agriculture Division, The Energy & Resources Institute, TERI Gram, Gurugram Faridabad road, Gwal Pahari, Gurugram, Haryana 122001, India

Arnab Kumar Ghosh
Department of Applied Biology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH- 12 (Old NH-34) Simhat, Haringhata, Nadia 741249, West Bengal, India

Jaya Bandyopadhyay
Department of Applied Biology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH- 12 (Old NH-34) Simhat, Haringhata, Nadia 741249, West Bengal, India

DOI: https://doi.org/10.52756/lbsopf.2024.e01.007

Keywords: Glioblastoma Multiforme, Withania somnifera, phytotherapy, Withaferin A, Withanolides

Abstract:
Glioblastoma multiforme (GBM) is the most severe and fatal form of brain tumor, leading to a poor survival rate in patients and making a significant contribution to cancer-related deaths. The typical approaches to treating GBM involve surgical procedures followed by chemotherapy, targeting molecular pathways involving receptors like Epidermal Growth Factor Receptor (EGFR, EGFRvIII) and Vascular Endothelial Growth Factor Receptor (VEGFR) to modulate various cell signaling pathways. However, the effectiveness of current GBM treatments is notably constrained. Withania somnifera (WS) (L.) Dunal, commonly known as Ashwagandha, has a history spanning over 3,000 years in Ayurvedic and traditional medicine. This medicinal plant has diverse properties, encompassing anti-inflammatory, anticancer and antioxidant attributes. Recent advancements in the field of herbal and traditional medicines have explored its potential in managing deadly diseases like cancer. Ashwagandha or W. somnifera, mostly found in dry, sub-tropical regions of the world including India, is a well-known source of traditional and herbal medicines, and has many specific phytochemicals, viz. Withaferin A, Withanolide etc. This review discusses the potential of W. somnifera, supported by several research reports dealing with the extracts and phytochemicals from different parts of the plant, showing effectiveness against

References:

  • Aalinkeel, R., Hu, Z., Nair, B. B., Sykes, D. E., Reynolds, J. L., & Mahajan, S. D. (2010). Genomic analysis highlights the role of the JAK-STAT signaling in the anti-proliferative effects of dietary flavonoid-’ashwagandha’ in prostate cancer cells. Evid Based Complement Alternat Med.,7(2), 177-87.
  • Ahmed, H. A., & El-Darier, S. M. (2022). Phytochemistry, allelopathy and anticancer potentiality of Withania somnifera (L.) Dunal (Solanaceae). Braz J Biol., 84, e263815.
  • Ali, S. A., & Meitei, K. V. (2005). Withania somnifera root extracts induce skin darkening in wall lizard melanophores via stimulation of cholinergic receptors. Nat Prod Res., 26(17), 1645-8.
  • Andallu, B., & Radhika, B. (2000). Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J. Exp Biol., 38(6), 607-9.
  • Arsalan, B., Masarat, N., Nahida, T., Suhaib, A., & Mehrose, A. (2023). An updated review on phytochemistry and molecular targets of Withania somnifera (L.) Dunal (Ashwagandha). Frontiers in Pharmacology, 14, 1663-9812.
  • Batchelor, T. T., Mulholland, P., Neyns, B., Nabors, L. B., Campone, M., & Wick, A. (2013). Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol., 31(26), 3212-8.
  • Bhattacharjee, P. (2020). Effects of cold stress, alprazolam and phytomedicine in combination with stress on blood glucose and haematogical parameter of the male albino rat. Int. J. Exp. Res. Rev.22, 37-44. https://doi.org/10.52756/ijerr.2020.v22.005
  • Brennan, C. W., Verhaak, R. G., McKenna, A., Campos, B., Noushmehr, H., & Salama, S. R. (2013). The somatic genomic landscape of glioblastoma. Cell, 155(2), 462-77.
  • Chang, E., Pohling, C., Natarajan, A., Witney, T. H., Kaur, J., & Xu, L. (2016). AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models. J Neurooncol., 126(2), 253-64.
  • Dar, P. A., Mir, S. A., Bhat, J. A., Hamid, A., Singh, L. R., & Malik, F. (2019). An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cells. Int J Biol Macromol., 135, 77-87.
  • Devi, P. U., Akagi, K., Ostapenko, V., Tanaka, Y., & Sugahara, T. (1996). Withaferin A: a new radiosensitizer from the Indian medicinal plant Withania somnifera. Int J Radiat Biol., 69(2), 193-7.
  • Dhami, J., Chang, E., & Gambhir, S. S. (2017). Withaferin A and its potential role in glioblastoma (GBM). Journal of neuro-oncology, 131(2), 201–211.
  • Di Stefano, A. L., Fucci, A., Frattini, V., Labussiere, M., Mokhtari, K., & Zoppoli, P. (2015). Detection, characterization, and inhibition of FGFR-TACC fusions in IDH wild-type glioma. Clin Cancer Res., 21(14), 3307-17.
  • Doma, M., Abhayankar, G., Reddy, V. D., & Kavi Kishor, P. B. (2012). Carbohydrate and elicitor enhanced withanolide (withaferin A and withanolide A) accumulation in hairy root cultures of Withania somnifera (L.). Indian J Exp Biol., 50(7), 484-90.
  • Dubey, S., Singh, M., Nelson, A., & Karan, D. (2021). A Perspective on Withania somnifera Modulating antitumor Immunity in Targeting Prostate Cancer. J Immunol Res., 2021, 9483433.
  • Felsberg, J., Hentschel, B., Kaulich, K., Gramatzki, D., Zacher, A., & Malzkorn, B. (2017). Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res., 23(22), 6846-55.
  • Ferguson, S. D., Zhou, S., Huse, J. T., de Groot, J. F., Xiu, J., & Subramaniam, D. S. (2018). Targetable gene fusions associate with the IDH wild-type astrocytic lineage in adult gliomas. J Neuropathol Exp Neurol., 77(6), 437-42.
  • Friday, B. B., Anderson, S. K., Buckner, J., Yu, C., Giannini, C., & Geoffroy, F. (2012). Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro Oncol., 14(2), 215-21.
  • Garg, S., Kaul, S. C., & Wadhwa, R. (2018). Anti-stress and glial differentiation effects of a novel combination of cucurbitacin B and withanone (CucWi-N): experimental evidence. Ann Neurosci., 25(4), 201-9.
  • Gowtham, H. G., Murali, M., Singh, S. B., Shivamallu, C., Pradeep, S., & Shivakumar, C. S.  (2022). Phytoconstituents of Withania somnifera unveiled Ashwagandhanolide as a potential drug targeting breast cancer: investigations through computational, molecular docking and conceptual DFT studies. PLOS ONE, 17(10), e0275432.
  • Halder, B., Singh, S., & Thakur, S. S. (2015). Withania somnifera Root Extract Has Potent cytotoxic Effect against Human Malignant Melanoma Cells. PLOS ONE, 10(9), e0137498.
  • Hanif, F., Muzaffar, K., Perveen, K., Malhi, S. M., & Simjee, S. H. U. (2017). Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev., 18(1), 3-9.
  • Hegi, M. E., Diserens, A. C., Gorlia, T., Hamou, M. F., de Tribolet, N., & Weller. M. (2005). MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med., 352(10), 997-1003.
  • Hegi, M. E., Genbrugge, E., Gorlia, T., Stupp, R., Gilbert, M. R., & Chinot, O. L. (2019). MGMT promoter methylation cutoff with safety margin for selecting glioblastoma patients into trials omitting temozolomide: A pooled analysis of four clinical trials. Clin Cancer Res., 25(6),1809-16.
  • Horn, S., Figl, A., Rachakonda, P. S., Fischer, C., Sucker, A., & Gast, A. (2013). Tert promoter mutations in familial and sporadic melanoma. Science, 339(6122), 959-61.
  • Hsu, J. H. M., Chang, P. M. H., Cheng, T. S., Kuo, Y. L., Wu, A. T. H., & Tran, T. H. (2019). Identification of withaferin A as a potential candidate for anti-cancer therapy in non-small cell lung cancer. Cancers, 11(7), 1003.
  • Islam, M. K., Saha, S., Mahmud, I., Mohamad, K., Awang, K., & Jamal Uddin, S. J. (2014). An ethnobotanical study of medicinal plants used by tribal and native people of Madhupur forest area, Bangladesh. J Ethnopharmacol., 151(2), 921-30.
  • Iyer, K., Saini, S., Bhadra, S., Kulavi, S., & Bandyopadhyay, J. (2023). Precision medicine advancements in glioblastoma: A systematic review. Biomedicine, 13(2), 1.
  • Jawarneh, S., & Talib, W. H. (2022). Combination of Ashwagandha water Extract and Intermittent Fasting as a Therapy to Overcome cisplatin Resistance in Breast Cancer: an in vitro and in vivo Study. Front Nutr., 9, 863619.
  • Jayaprakasam, B., Zhang, Y., Seeram, N. P., & Nair, M. G. (2003). Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci., 74(1), 125-32.
  • Kakar, S. S., Ratajczak, M. Z., Powell, K. S., Moghadamfalahi, M., Miller, D. M., & Batra, S. K. (2014). Withaferin a alone and in combination with cisplatin suppresses growth and metastasis of ovarian cancer by targeting putative cancer stem cells. PLOS ONE, 9(9), e107596.
  • Kataria, H., Kumar, S., Chaudhary, H., & Kaur, G. (2016). Withania somnifera Suppresses Tumor Growth of Intracranial Allograft of glioma Cells. Mol Neurobiol., 53(6), 4143-58.
  • Kataria, H., Wadhwa, R., Kaul, S. C., & Kaur, G. (2013). Withania somnifera water extract as a potential candidate for differentiation based therapy of human neuroblastomas. PLOS ONE, 8(1), e55316.
  • Khajuria, R. K., Suri, K. A., Gupta, R. K., Satti, N. K, Amina, M., & Suri, O. P. (2004). Separation, identification, and quantification of selected withanolides in plant extracts of Withania somnifera by HPLC-UV(DAD)-positive ion electrospray ionisation-mass spectrometry. J Sep Sci., 27(7-8), 541-6.
  • Killela, P. J., Reitman, Z. J., Jiao, Y., Bettegowda, C., Agrawal, N., & Diaz, L. A. Jr. (2013). TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A, 110(15), 6021-6.
  • Kim, S. H., & Singh, S. V. (2014). Mammary cancer chemoprevention by withaferin AIs accompanied by in vivo suppression of self-renewal of cancer stem cells. Cancer Prev Res (Phila), 7(7), 738-47.
  • Kong, X. T., Nguyen, N. T., Choi, Y. J., Zhang, G., Nguyen, H. N., & Filka, E. (2018). Phase 2 study of bortezomib combined with temozolomide and regional radiation therapy for upfront treatment of patients with newly diagnosed glioblastoma multiforme: safety and efficacy assessment. Int J Radiat Oncol Biol Phys., 100(5), 1195-203.
  • Korshunov, A., Chavez, L., Sharma, T., Ryzhova, M., Schrimpf, D., & Stichel, D. (2018). Epithelioid glioblastomas stratify into established diagnostic subsets upon integrated molecular analysis. Brain Pathol., 28(5), 656-62.
  • Kour, K., Pandey, A., Suri, K. A., Satti, N. K., Gupta, K. K., & Bani, S. (2009). Restoration of stress-induced altered T cell function and corresponding cytokines patterns by Withanolide A. Int Immunopharmacol., 9(10), 1137-44.
  • Kulkarni, S. K., & Dhir, A. (2008). Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry32(5), 1093-105.
  • Kumar, S., Mathew, S. O., Aharwal, R. P., Tulli, H. S., Mohan, C. D., Sethi, G., Ahn, K. S., Webber, K., Sandhu, S. S., & Bishayee, A. (2023). Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel, Switzerland)16(2), 160.
  • Kumar, S., Singh, B. S., & Singh, R. B. (2017). Ethnomedicinal plants uses to cure different human diseases by rural and tribal peoples of Hathras district of Uttar Pradesh. J Pharmacogn Phytochem.,6(2), 346-8.
  • Lee, D., Yu, J. S., Ha, J. W., Lee, S. R., Lee, B. S., Kim, J. C., Kim, J. K., Kang, K. S., & Kim, K. H. (2022). Antitumor Potential of Withanolide Glycosides from Ashwagandha (Withania somnifera) on Apoptosis of Human Hepatocellular Carcinoma Cells and Tube Formation in Human Umbilical Vein Endothelial Cells. Antioxidants (Basel, Switzerland)11(9), 1761.
  • Legler, J. M., Ries, L. A., Smith, M. A., Warren, J. L., Heineman, E. F., & Kaplan, R. S. (1999). Cancer surveillance series [corrected]: Brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst., 91(16), 1382-90.
  • Li, L., Niu, B., Zhang, W., Hou, L., & Zheng, Y. (2022). Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis. Acta Biochim Pol., 69(1), 197-203.
  • Li, W., Zhang, C., Du, H., Huang, V., Sun, B., & Harris, J. P. (2016). Withaferin A suppresses the up‐regulation of acetyl‐coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model. Mol Carcinog, 55(11), 1739-46.
  • Li, X., Zhu, F., Jiang, J., Sun, C., Wang, X., & Shen, M. (2015). Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells. Cancer Lett., 357(1), 219-30.
  • Madhu, N.R., Sarkar, B., Biswas, P., Roychoudhury, S., Behera, B.K., & Acharya, C.K. (2023). Therapeutic potential of melatonin in glioblastoma: Current knowledge and future prospects. Biomarkers in Cancer Detection and Monitoring of Therapeutics, Volume-2. Elsevier Inc., pp. 371-386. ISBN 978-0-323-95114-2. https://doi.org/10.1016/B978-0-323-95114-2.00002-9
  • Madhu, N.R., Sarkar, B., Roychoudhury, S., Behera, B.K. (2022). Melatonin Induced in Cancer as a Frame of Zebrafish Model. © Springer Nature Singapore Pte Ltd. 2022, S. Pathak et al. (eds.), Handbook of Animal Models and its Uses in Cancer Research, pp. 1-18. ISBN: 978-981-19-1282-5 https://doi.org/10.1007/978-981-19-1282-5_61-1
  • Malik, T., Pandey, D. K., & Dogra, N. (2013). Ameliorative potential of aqueous root extract of Withania somnifera against paracetamol induced liver damage in mice. Pharmacologia, 4, 89–94.
  • McKenna, M. K., Gachuki, B. W., Alhakeem, S. S., Oben, K. N., Rangnekar, V. M., & Gupta, R. C. (2015). Anti-cancer activity of withaferin A in B-cell lymphoma. Cancer Biol Ther. 16(7), 1088-98.
  • Mirjalili, M. H., Fakhr-Tabatabaei S. M., Alizadeh, H., Ghassempour, A., & Mirzajani, F. (2009).  Genetic and withaferin A analysis of Iranian natural populations of Withania somnifera and W. coagulans by RAPD and HPTLC. Nat Prod Commun., 4(3), 337-46.
  • Mishra, L. C., Singh, B. B., & Dagenais, S. (2000). Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev., 5(4), 334-46.
  • Misra, L., Lal, P., Sangwan, R. S., Sangwan, N. S., Uniyal, G. C., & Tuli, R. (2005). Unusually sulfated and oxygenated steroids from Withania somnifera. Phytochemistry, 66(23), 2702-7.
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., & Mangalapandi, P. (2018). IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Sci Rep., 8(1), 4329.
  • Mondal, S., Bhattacharya, K., Mallick, A., Sangwan, R., & Mandal, C. (2012). Bak compensated for Bax in p53-null cells to release cytochrome c for the initiation of mitochondrial signaling during Withanolide D-induced apoptosis. PLOS ONE, 7(3), e34277.
  • Munagala, R., Kausar, H., Munjal, C., & Gupta, R. C. (2011). Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis, 32(11), 1697-705.
  • Nagella, P., & Murthy, H. N. (2010). Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresour Technol., 101(17). 6735-9.
  • Nakajima, H., Wakabayashi, Y., Wakamatsu, K., & Imokawa, G. (2011). An extract of Withania somnifera attenuates endothelin-1-stimulated pigmentation in human epidermal equivalents through the interruption of PKC activity within melanocytes. Phytother Res., 25(9),1398-411.
  • Ou, A., Ott, M., Fang, D., & Heimberger, A. B. (2021). The role and therapeutic targeting of JAK/STAT signaling in glioblastoma. Cancers (Basel), 13(3), 437.
  • Plate, K. H., Breier, G., Weich, H. A., Mennel, H. D., & Risau, W. (1994). Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer, 59(4), 520-9.
  • Pramanick, S., Roy, A., Ghosh, S., Majumder, H. K., & Mukhopadhyay, S. (2008). Withanolide Z, a new chlorinated withanolide from Withania somnifera. Planta Med., 74(14),1745-8.
  • Rah, B., Amin, H., Nayak, D., Chakraborty, S., Rawoof, A., & Mintoo, M. J. (2016). Dual modulation of Ras-Mnk and PI3K-AKT-mTOR pathways: a novel c-FLIP inhibitory mechanism of 3-AWA mediated translational attenuation through dephosphorylation of eIF4E. Sci Rep., 6(1), 1-16.
  • Roth. P., Silginer, M., Goodman, S. L., Hasenbach, K., Thies, S., & Maurer, G. (2013). Integrin control of the transforming growth factor-β pathway in glioblastoma. Brain., 136(2), 564-76.
  • Samadi, A. K., Cohen, S. M., Mukerji, R., Chaguturu, V., Zhang, X., Timmermann, B. N., et al. (2012). Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation. Tumour Biol., 33(4), 1179-89.
  • Samadi, A. K., Mukerji, R., Shah, A., Timmermann, B. N., & Cohen, M. S. (2010). A novel RET inhibitor with potent efficacy against medullary thyroid cancer in vivo. Surgery, 148(6), 1228-36.
  • Sanchez-Martin, M., Ambesi-Impiombato, A., Qin, Y., Herranz, D., Bansal, M., Girardi, T., et al. (2017). Synergistic antileukemic therapies in NOTCH1-induced T-ALL. Proc Natl Acad Sci U S A, 114(8), 2006-11.
  • Sanyal, R., Mallick, S., & Mazumder, A. (2018). Indigenous Knowledge of Ethnic Community on Usage of Kripa (Lumnitzera racemosa) and its preliminary screening. Int. J. Exp. Res. Rev.15, 44-50. https://doi.org/10.52756/ijerr.2018.v15.007
  • Sarkar, B., Bhattacharya, P., Yen Chen, C., Maity, J., & Biswas, T. (2022). A comprehensive characterization and therapeutic properties in ripened Noni fruits (Morinda citrifolia L.). Int. J. Exp. Res. Rev.29, 10-32. https://doi.org/10.52756/ijerr.2022.v29.002
  • Setty Balakrishnan, A., Nathan, A. A., Kumar, M., Ramamoorthy, S., & Ramia Mothilal, S. K. (2017). Withania somnifera targets interleukin-8 and cyclooxygenase-2 in human prostate cancer progression. Prostate Int., 5(2), 75-83.
  • Shah, N., Kataria, H., Kaul, S. C., Ishii, T., Kaur, G., & Wadhwa, R. (2009). Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: combinational approach for enhanced differentiation. Cancer Sci., 100(9),1740-7.
  • Shah, N., Singh, R., Sarangi, U., Saxena, N., Chaudhary, A., & Kaur, G. (2015). Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PLOS ONE, 10(3):e0120554.
  • Sharma, P., Mondal, H., Mondal, S., & Majumder, R. (2022). Recent updates on the role of phytochemicals in the treatment of glioblastoma multiforme. Journal of Cancer Research and Therapeutics.
  • Siddique, A. A., Joshi, P., Misra, L., Sangwan, N. S., & Darokar, M. P. (2014). 5,6-de-epoxy-5-en-7-one-17-hydroxy withaferin A, a new cytotoxic steroid from Withania somnifera L. Dunal leaves. Nat Prod Res., 28(6), 392-8.
  • Siddiqui, S., Ahmed, N., Goswami, M., Chakrabarty, A., & Chowdhury, G. (2021). DNA damage by Withanone as a potential cause of liver toxicity observed for herbal products of Withania somnifera (Ashwagandha). Current research in toxicology2, 72–81.
  • Singh, D., Chan, J. M., Zoppoli, P., Niola, F., Sullivan, R., & Castano, A. (2012). Transforming fusions of FGFR and TACC genes in human glioblastoma. Science, 337(6099), 1231-5.
  • Sinkar, S. R., & Samarth, V. D. (2019). Medicinal plants used for the treatment of various skin disorders by a rural community in warud region of Maharashtra. The Pharm Innov J., 8(5), 791-4.
  • Soman, S., Anju, T. R., Jayanarayanan, S., Antony, S., & Paulose, C. S. (2013). Impaired motor learning attributed to altered AMPA receptor function in the cerebellum of rats with temporal lobe epilepsy: ameliorating effects of Withania somnifera and withanolide A. Epilepsy Behav., 27(3), 484-91.
  • Soman, S., Korah, P. K., Jayanarayanan, S., Mathew, J., & Paulose, C. S. (2012). Oxidative stress induced NMDA receptor alteration leads to spatial memory deficits in temporal lobe epilepsy: ameliorative effects of Withania somnifera and Withanolide A. Neurochem Res., 37(9), 1915-27.
  • Srinivasan, S., Ranga, R. S., Burikhanov, R., Han, S. S., & Chendil, D. (2007). Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res., 67(1), 246-53.
  • Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., & Taphoorn, M. J. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med., 352(10), 987-96.
  • Stupp, R., Taillibert, S., Kanner, A., Read, W., Steinberg, D., Lhermitte, B., et al. (2017). Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA, 318(23), 2306-16.
  • Subbaraju, G. V., Vanisree, M., Rao, C. V., Sivaramakrishna, C., Sridhar, P., & Jayaprakasam, B. (2006). Ashwagandhanolide, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera. J Nat Prod., 69(12), 1790-2.
  • Swati, K., Quazi, S., Srivastava, R., Panda, S.P., Agrawal, K., Parkash, A., & Kumar, D. (2023). Exploring Silybin B as a FOXM1 Inhibitor in Glioblastoma Stem Cells: Molecular Docking, ADMET, and Molecular Dynamics Approaches.
  • Szabo, E., Schneider, H., Seystahl, K., Rushing, E. J., Herting, F., Weidner, K. M., et al. (2016). Autocrine VEGFR1 and VEGFR2 signaling promotes survival in human glioblastoma models in vitro and in vivo. Neuro Oncol., 18(9),1242-52.
  • Szarc vel Szic, K., Op de Beeck, K., Ratman, D., Wouters, A., Beck, I. M., & Declerck, K. (2014). Pharmacological levels of Withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells. PLOS ONE, 9(2), e87850.
  • Tang, Q., Ren, L., Liu, J., Li, W., Zheng, X., & Wang, J. (2020). Withaferin A triggers G2/M arrest and intrinsic apoptosis in glioblastoma cells via ATF4-ATF3-CHOP axis. Cell Prolif., 53(1), e12706.
  • Thaiparambil, J. T., Bender, L., Ganesh, T., Kline, E., Patel, P., & Liu, Y. (2011). Withaferin A inhibits breast cancer invasion and metastasis at sub‐cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer, 129(11), 2744-55.
  • Tiwari, R., Chakraborty, S., & Saminathan, M. (2014). Ashwagandha [Withania somnifera]: role in safeguarding health, immunomodulatory efects, combating infections and therapeutic application: a review. J Biol Sci., 2, 77-94.
  • Tohda, C., Kuboyama, T., & Komatsu, K. (2005). Search for natural products related to regeneration of the neuronal network. Neurosignals,14(1-2), 34-45.
  • Tong, X., Zhang, H., & Timmermann, B. N. (2011). Chlorinated Withanolides from Withania somnifera. Phytochem Lett., 4(4), 411-4.
  • Umair, M., Altaf, M., Bussmann, R. W., & Abbasi, A. M. (2019). Ethnomedicinal uses of the local flora in Chenab riverine area, Punjab Province Pakistan. J Ethnobiol Ethnomed., 15(1), 7.
  • Vaishnavi, K., Saxena, N., Shah, N., Singh, R., Manjunath, K., Uthayakumar, M., Kanaujia, S. P., Kaul, S. C., Sekar, K., & Wadhwa, R. (2012). Differential activities of the two closely related withanolides, Withaferin A and Withanone: bioinformatics and experimental evidences. PloS one7(9),  e44419.
  • Wang, H. C., Hu, H. H., Chang, F. R., Tsai, J. Y., Kuo, C. Y., & Wu, Y. C. (2019). Different effects of 4β-hydroxywithanolide E and withaferin A, two withanolides from Solanaceae plants, on the Akt signaling pathway in human breast cancer cells. Phytomedicine, 53,213-22.
  • Wang, R., Zhang, S., Chen, X., Li, N., Li, J., & Jia, R. (2018). EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol Cancer, 17(1), 166.
  • Wei, Y., Lu, C., Zhou, P., Zhao, L., Lyu, X., Yin, J., et al. (2021). EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling. Neuro Oncol., 23(4), 611-24.
  • Weller, M., van den Bent, M., Tonn, J. C., Stupp, R., Preusser, M., Cohen-Jonathan-Moyal, E., et al. (2017). European Association for Neuro-Oncology (EANO) Task Force on Gliomas. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol., 18(6), e315-29.
  • Widodo, N., Kaur, K., Shrestha, B. G., Takagi, Y., Ishii, T., Wadhwa, R., et al. (2007). Selective killing of cancer cells by leaf extract of Ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res., 13(7), 2298-306.
  • Widodo, N., Takagi, Y., Shrestha, B. G., Ishii, T., Kaul, S. C., & Wadhwa, R. (2008). Selective killing of cancer cells by leaf extract of Ashwagandha: components, activity and pathway analyses. Cancer Lett., 262(1), 37-47.
  • Wong, E. T., Hess, K. R., Gleason, M. J., Jaeckle, K. A., Kyritsis, A. P., & Prados, M. D. (1999). Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol., 17(8), 2572-8.
  • Xu, Y. M., Gao, S., Bunting, D. P., & Gunatilaka, A. A. (2011). Unusual withanolides from aeroponically grown Withania somnifera. Phytochemistry, 72(6), 518-22.
  • Yang, H., Shi, G., & Dou, Q. P. (2007). The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from ‘Indian winter cherry’. Mol Pharmacol., 71(2), 426-37.
  • Yoneyama, T., Arai, M. A., Sadhu, S. K., Ahmed, F., & Ishibashi, M. (2015). Hedgehog inhibitors from Withania somnifera. Bioorg Med Chem Lett., 25(17), 3541-4.
  • Youlden, D. R., Baade, P. D., Valery, P. C., Ward, L. J., Green, A. C., & Aitken, J. F. (2012). Childhood cancer mortality in Australia. Cancer Epidemiol., 36(5), 476-80.
  • Yu, Y., Hamza, A., Zhang, T., Gu, M., Zou, P., & Newman, B. (2010). Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol., 79(4), 542-51.
  • Zhao, J., Jiang, Y., Chen, L., Ma, Y., Zhang, H., & Zhou, J. (2021). The EIF4A3/CASC2/RORA feedback loop regulates the aggressive phenotype in glioblastomas. Front Oncol., 11, 699933. Zhao, J., Nakamura, N., Hattori, M., Kuboyama, T., Tohda, C., & Komatsu, K. (2002). Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull (Tokyo), 50(6), 760-5.
Cover image of the book "Life as Basic Science: an overview and prospects for the future, Vol. 1" featuring DNA strands, human anatomy, marine life, plants, and nutritional supplements.
Life as Basic Science: an overview and prospects for the future, Vol. 1

How to Cite
Sohini Kulavi, Debajit Dhar, Karan Iyer, Arnab Kumar Ghosh and Jaya Bandyopadhyay* (2024). Unveiling the Potentials of Withania somnifera (L.) Dunal as a Precise Therapeutic Intervention Against Glioblastoma Multiforme. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Ashis Kumar Panigrahi, Prof. Rose Stiffin and Dr. Jayata Kumar Das (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 1, pp. 68-91. ISBN: 978-81-969828-9-8 doi: https://doi.org/10.52756/lbsopf.2024.e01.007

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device