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Abstract: 

Glioblastoma multiforme (GBM) is the most severe and fatal form of brain tumor, leading to a poor survival 

rate in patients and making a significant contribution to cancer-related deaths. The typical approaches to treating 

GBM involve surgical procedures followed by chemotherapy, targeting molecular pathways involving receptors 

like Epidermal Growth Factor Receptor (EGFR, EGFRvIII) and Vascular Endothelial Growth Factor Receptor 

(VEGFR) to modulate various cell signaling pathways. However, the effectiveness of current GBM treatments is 

notably constrained. Withania somnifera (WS) (L.) Dunal, commonly known as Ashwagandha, has a history 

spanning over 3,000 years in Ayurvedic and traditional medicine. This medicinal plant has diverse properties, 

encompassing anti-inflammatory, anticancer and antioxidant attributes. Recent advancements in the field of 

herbal and traditional medicines have explored its potential in managing deadly diseases like cancer. 

Ashwagandha or W. somnifera, mostly found in dry, sub-tropical regions of the world including India, is a well-

known source of traditional and herbal medicines, and has many specific phytochemicals, viz. Withaferin A, 

Withanolide etc. This review discusses the potential of W. somnifera, supported by several research reports 

dealing with the extracts and phytochemicals from different parts of the plant, showing effectiveness against 
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Introduction: 

Glioblastoma multiforme (GBM) is considered the most aggressive and lethal type of brain 

tumor (Hanif et al., 2017). The reported 5-year patient survival has been consistently poor, 

varying to about 5% in the past three decades (Ledger et al., 1999; Youlden et al., 2012). There 

are 100,000 new instances of glioblastoma diagnosed annually worldwide. Despite having a low 

incidence rate of less than 6 per 100,000 people, glioblastoma accounts for 2.5% of all cancer-

related fatalities and with the leading cause of mortality from cancer in those between the ages 

of 15 and 34 (Hanif et al., 2017). Managing recurrent cases of the illness has been challenging 

and unpredictable. Traditional chemotherapeutic agents have included drugs like temozolomide, 

lomustine, carboplatin, and carmustine in various dosages, with typical response rates less than 

20%, 6-month progression-free survival around 15%, and overall survival typically less than 6 

months, although outcomes across studies have shown variability (Wong et al., 1999; Batchelor 

et al., 2013).  

Chemotherapeutic drugs frequently result in complications and increased malignancy with 

recurrent cases of GBM. Targeting these recurrent cases based on their molecular profiles has 

proven to be challenging, thus necessitating a personalized approach. Researchers have found 

that effectively targeting the tumor involves identifying the underlying cause of recurrence and 

detecting the signaling pathways involved. Over the years, an expanding array of phytochemicals 

has been employed due to their potential to target specific pathways and receptors, alongside their 

efficacy in penetrating the Blood-Brain Barrier (BBB). Indian traditional medicine has a notable 

history of employing different kinds of plants to cure a variety of diseases, and one such widely 

used plant in Ayurvedic studies is Withania somnifera (WS), commonly known as Ashwagandha 

or Winter Cherry (Andallu and Radhika, 2000). According to Ayurvedic medical tradition, the 

Rishi (sage) Punarvasu Atriya is credited with discovering the plant's therapeutic properties over 

3,000 years ago (Tiwari et al., 2014). Ashwagandha possesses immunomodulatory, hemopoietic, 

anti-inflammatory, anticancer, anti-stress, and antioxidant potentials, also benefitting the 

endocrine, cardiovascular, and central nervous systems (Mishra et al., 2000). With over twenty-

nine bioactive compounds found in different parts of the plant, mostly alkaloids, steroidal 

lactones, and saponins, preparations of W. somnifera have been discovered to have a therapeutic 

role in practically all CNS-related disorders, neurodegenerative diseases, neuropsychiatric 

diseases, and drug addiction (Kulkarni and Dhir, 2008). In combating prostate cancer, the 

GBM in vitro and in vivo. Therefore, studying the effectiveness of W. somnifera- derived phytochemicals on 

specific therapeutic targets of GBM could unveil a new avenue in managing GBM. This review has exhaustively 

surveyed and analyzed several research reports from various literature databases on W. somnifera, its 

phytochemicals, and its leaf or root extracts as potential therapeutic interventions against GBM. It is evident 

that GBM management requires precise therapeutic intervention to achieve better overall survival rates in 

patients. W. somnifera holds promise in addressing the molecular targets associated with the disease, integrating 

precision medicine into phytotherapy. However, further research is imperative to establish these 

phytocompounds as nutritional supplements and to develop promising therapeutic strategies for combating 

GBM. 
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modulation of antitumor immunity with the help of Ashwagandha is promising (Dubey et al., 

2021). Withaferin A (an important withanolide of WS) has been shown to trigger triple-negative 

breast cancer cell-specific clinically relevant anticancer effects at certain pharmacological levels 

(Szarc et al., 2014). WS water extracts proved to be a potential candidate in differentiation-based 

therapy of human neuroblastomas by simultaneously inducing downregulation of MMP 2 & 9 

and apoptosis (Kataria et al., 2013).  The anticancer activity of Ashwagandha and its ability to 

target and suppress tumors inspired researchers to find its effect on GBM. 

 
Figure 1. Graphical description of the study 

Potential Targets for Glioblastoma Multiforme: 

Glioblastoma Multiforme, the most malignant form of Glioma, poses a challenge in terms of 

complexity and management. The current treatment strategies mostly include surgical 

interventions followed by chemotherapy, along with the exploration of novel molecular targets 

such as EGFR, EGFRvIII, and VEGFR. Several potential targets for GBM are yet to be 

addressed. Typically, patients diagnosed with Glioblastoma undergo conventional treatment 

involving surgery wherever feasible, followed by field radiation combined with temozolomide 

chemotherapy up to six maintenance cycles (Weller et al., 2017; Stupp et al., 2005). No 

alternative treatment strategy has demonstrated an increase in overall survival for newly 

diagnosed patients, except for tumor-treating fields (Stupp et al., 2017). Although strictly limited 

in the newly diagnosed context, the methylation of the O6-methylguanine DNA 

methyltransferase (MGMT) promoter has been proven as a predictive biomarker for the benefit 

of treatment with temozolomide (Hegi et al., 2005; Hegi et al., 2019). The bulk of clinical trial 

strategies that aim at intrinsic targets of glioblastoma, address tyrosine kinase-mediated 
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oncogenic signaling, cell cycle regulation, and vulnerability to apoptosis induction (Fig. 2). In 

this context, epidermal growth factor receptor (EGFR) is amplified by 40-50%, included with 

mutations at EGFRvIII in 50% of these, and without amplification by 10-20% can also be seen 

in GBM which stimulates proliferation, invasion, and apoptosis resistance (Brennan et al., 2014; 

Felsberg et al., 2017). By activating phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 

subunit alpha (PIK3CA) mutations or lack of tumor suppressor phosphatase and tensin homolog 

on chromosome ten (PTEN) function almost uniformly activates PI3K/AKT/mTOR pathway in 

IDH-wildtype GBM inducing metabolism, proliferation, and migration (Brennan et al., 2014). 

Activation of the Phosphorylated Protein Kinase B (AKT) pathway often observed in recurrent 

GBM occurs due to the higher levels of p-AKT phosphorylated by PDK-1 (3-phosphoinositide-

dependent kinase-1). Fusion of fibroblast growth factor receptor (FGFR) with acidic coiled-coil 

(TACC) gene and sometimes by mutation causes proliferation of GBM (Singh et al., 2012; Di 

Stefano et al., 2015). Deletion or mutation in the p53 gene (35%) or neutralization of the p53 

function by amplification of MDM2 or MDM4 gene (20%) has been reported in GBM (Brennan 

et al., 2014). In 90% of IDH-wild type GBM mutation in TERT promoter amplifies TERT 

transcription, which immortalizes tumor cells (Brennan et al., 2014; Killela et al., 2013; Sharma 

et al., 2022). Isocitrate dehydrogenase (IDH) mutations have also been observed where isoforms 

of IDH present in the peroxisomes and cytoplasm of glial cells exhibit increased oxidative 

damage and epigenetic alterations resulting in tumor growth (Horn et al., 2013). It has been 

revealed that altered proteasome activity may make cancer cells more vulnerable and has also 

been examined as a therapeutic target in recurrent GBM (Kong et al., 2019; Friday et al., 2012). 

Fusion in Neurotrophic tyrosine receptor kinases (NTRK) coding genes NTRK1/2/3 has been 

reported in 1-2% of GBM which stimulates proliferation (Ferguson et al., 2018). Up to 50% of 

epithelioid glioblastomas carry the uncommon BRAFV600E mutation, which induces 

proliferation. The proliferation-promoting MAP kinase/ERK signaling pathway is fed by a Raf 

family of kinase member BRAF (Korshunov et al., 2018). Overexpression of the Mesenchymal 

Epithelial Transition (MET) gene and infrequent amplification causes migration, invasion, and 

wound healing of GBM cells. It has been demonstrated that owing to homozygous CDKN2A/B 

deletion, RB1 gene mutations, or CDK4 or CDK6 amplification, most of the IDH-wild type 

glioblastomas have altered pRB cell cycle regulatory pathway (Brennan et al., 2014). Several 

other gene regulators were reported to be overexpressed.  The Eukaryotic Initiation Factor 4A-3 

(EIF4A3) is one such RNA binding protein, which is known to promote several oncogenes and 

their circularization, interact with miRNAs that regulate the cell cycle regulators, ultimately 

inducing the aggressive phenotype of GBM (Zhao et al., 2021). EIF4A3 promotes circular RNA 

Matrix metalloproteinase 9 (circMMP9), which in turn upregulates CDK4 and AURKA (Wang 

et al., 2020). EIF4A3 causes Temozolomide resistance by upregulation of NRAS (Wei et al., 

2021). There are also a few potential microenvironmental targets in glioblastoma. Vascular 

endothelial growth factor (VEGF) forms new blood vessels where hypoxia triggers angiogenesis 

and becomes a potential factor for glioblastoma survival (Szabo et al., 2016; Plate et al., 1994). 

Cell surface molecule integrins and WNT proteins which integrate signals between cells and the 
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extracellular matrix, play a crucial role in cellular activities like adhesion, invasion, migration, 

and angiogenesis determining the fate of the cell. World Health Organization (WHO) reports 

showed the increased localization of WNT signaling protein β-catenin and its complex with T-

cell factor (TCF4) as higher in glioma and results in increased activation of transcription factors, 

thus promoting resistance to chemotherapeutic treatments (Sharma et al., 2022). In glioblastoma 

and associated vasculature, the involvement of specific subtypes of integrins has been established 

(Plate et al., 1994). 

 
Figure 2. Several potential molecular targets in Glioblastoma Multiforme 

Onco-medicinal Aspects of Withania somnifera: 

WS is among the most prevalent Indian medicinal plants used in traditional medicine. Several 

bioactive compounds along with plant-specific phytochemicals, are present in various plant parts 

of WS, which are reported to exhibit potent activity against different types of cancers. Numerous 

studies have suggested that the use of WS’s leaves, roots, seeds, and bark may derive benefits in 

cancer treatment (Kumar et al., 2017; Islam et al., 2014; Sinkar and Samarth, 2019; Li et al., 

2016). Reports have confirmed the use of WS to be effective against breast cancer (Umair et al., 

2019; Dar et al., 2019; Thaiparambil et al., 2011; Rah et al., 2016; Gowtham et al., 2022; Kim et 

al., 2015; Jawarneh and Talib, 2022; Li et al., 2015), alcoholic root extracts of WS have displayed 

inhibitory effects on the growth of the human breast cancer cell line (MCF7), hepatocellular 

carcinoma cell line (HepG2) consisting mutation in the TERT promoter, colon cancer cell line 

(CaCo2) with mutations in APC and β-catenin genes, and human non-small cell lung cancer cell 

line (A549) harboring KRAS (Kirsten rat sarcoma) mutant (Ahmed and El-Darier, 2022). 

Withaferin A (WA), a phytochemical present in different plant parts of WS, displays anticancer 

activity in human pancreatic cancer cell Panc-1 xenograft in nude mice, coupled with oxaliplatin, 

which causes reactive oxygen species-mediated inhibition of the PI3K/AKT pathway (Jawarneh 
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and Talib, 2022). In pancreatic cancer cells, heat shock protein 90 (HSP90) is targeted by WA, 

which stimulates antiproliferative activity (Yu et al., 2010). Withaferin A in low doses has been 

found to be an effective inhibitor of HSP90, which resulted in growth arrest at the G2/M phase 

(Wang et al., 2019). Inhibition of HSP90 by WA was also observed in A20 B-cell lymphoma 

allograft in Balb/c female mice (McKenna et al., 2015). In Non-Small Cell Lung Cancer, WA 

inhibited cancer stem cell development by impacting numerous targets of the mammalian Target 

of Rapamycin (mTOR)/ Signal Transducer and Activator of Transcription 3 (STAT3) pathways 

(Hsu et al., 2019). In the development of human prostate cancer, the alcoholic leaf extracts of 

WS targeted interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) in the PC-3 prostate cancer cell 

line. Chronic inflammation, enhanced angiogenesis, proliferation, migration, and apoptosis 

inhibition occur in conjunction with overexpression of IL-8 and COX-2. Moreover, the disease's 

transition from an androgen-dependent to an androgen-independent state is promoted by their 

elevated circulating levels (Setty et al., 2017). Withaferin A has been reported to induce apoptosis 

and inhibition of the proteasome system in nude mice PC-3 prostate cancer xenograft (Srinivasan 

et al., 2007; Yang et al., 2007). By inhibiting the expression of the RET (REarranged during 

Transfection) gene, WA is a prospective inhibitor of medullary thyroid carcinomas (MTC) cell 

line DRO-81-1 xenograft in nude mice (Samadi et al., 2010). On the other hand, WA induced 

p53-dependent apoptosis in human cervical cancer cell CaSki xenograft in nude mice by 

suppressing HPV oncogenes and upregulating tumor suppressor proteins (Munagala et al., 2011). 

Aqueous extracts of WS root are highly cytotoxic to human malignant melanoma A375 cells 

(Halder et al., 2015). Recent evidence suggests that WA suppresses cell growth of human 

myeloma cells U266B1 and IM-9 by causing intrinsic apoptosis mediated by the induction of the 

reactive oxygen species (ROS) pathway (Li et al., 2022). Furthermore, it is reported that 

Eukaryotic Translation Initiation Factor 2A (EIF2A)-dependent inhibition of translation was 

observed in neurogenic locus notch homolog protein 1 (NOTCH1) mutated T-cell 

acute lymphoblastic leukemia (T-ALL) in xenograft NRG mice (Sanchez-Martin et al., 2017). 

By targeting putative cancer stem cells, WA alone or in combination with cisplatin inhibited the 

growth and spread of ovarian cancer in A2780 xenograft in nude mice (Kakar et al., 2014). By 

inhibiting AKT and c-MET activation, WA also promotes apoptosis in uveal melanoma cell 92-

1 xenograft in SCID mice (Samadi et al., 2021).  

Among the numerous withanolides present in the plant, Withaferin A, Withanolide A and 

Withanone have proved evidence for affinity towards GBM and other types of tumors. These 

steroidal lactones have been extensively studied for their Absorption, Distribution, Metabolism, 

and Excretion (ADME) properties to evaluate their antagonistic activities. Structurally, 

Withanone is an epoxy compound with oxygen atoms at positions C6 and C7, having hydroxyl 

groups at C5 and C17. In contrast, Withaferin A is an epoxy compound with oxygen atoms at C5 

and C6 positions, accompanied by hydroxyl groups at C4 and C27. Early studies have shown the 

superiority of Withaferin A in inducing apoptosis in cancer cells at concentrations <0.5µg/mL 

(Vaishnavi et al., 2012). Extraction of Withanolides has enabled researchers to identify pathways 

and targets in the management of tumor cells. With the presence of structurally different 
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phytochemicals in WS, it can address the tumor-inducing molecular targets in different types of 

cancer (Fig. 4). 

 

Figure 3. Several potential molecular targets of WS phytochemicals in the management of tumor cells 

Phytochemical Profile of Withania somnifera: 

Withania somnifera and its phytochemicals have been found effective in glioblastoma 

management (Kataria et al., 2016; Shah et al., 2009; Tang et al., 2020; Chang et al., 2016; Garg 

et al., 2018). An abundant number of phytochemicals have been found in the WS plant with a 

countable one specific to the Withania sp. While looking for a therapeutic cure for GBM, the 

effect of Withania sp.-specific phytochemicals existing in WS (Table 1) has been considered.  

 

 

Table 1: Phytochemical profiling of different parts of WS. 
Plant 

Part 

Phytochemical Name Reference Plant 

Part 

Phytochemical Name Reference 
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Leaf Withanolide Q (Mohanraj et al., 2018)  Withaferin A (Mohanraj et al., 

2018; Khajuria 

et al., 2004; 

Mirjalili et al., 

2009; Doma et 

al., 2012; 

Nakajima et al., 

2011; Ali and 

Meitei, 2012) 

 Withanolide R (Mohanraj et al., 2018)  Withanolide E (Mohanraj et al., 

2018) 

 Withanolide M (Mohanraj et al., 2018)  Withasomnine (Mohanraj et al., 

2018) 

 Withanolide D (Mohanraj et al., 2018; 

Mondal et al., 2012) 

 Withanolide G (Mohanraj et al., 

2018) 

 Withaferin A (Mohanraj et al., 2018; 

Khajuria et al., 2004; 

Misra et al., 2005; 

Pramanick et al., 2008; 

Tong et al., 2011; 

Jayaprakasam et al., 

2002; Mirjalili et al., 

2009; Xu et al., 2011; 

Yoneyama et al., 2015) 

 Withanolide P (Mohanraj et al., 

2018) 

 Withanolide E (Mohanraj et al., 2018)  Withanone (Mohanraj et al., 

2018; Khajuria 

et al., 2004) 

 Withasomnine (Mohanraj et al., 2018)  Withanolide S (Mohanraj et al., 

2018) 

 Withanolide G (Mohanraj et al., 2018)  Withanolide C (Mohanraj et al., 

2018) 

 Withanolide O (Mohanraj et al., 2018)  Withanolide L (Mohanraj et al., 

2018) 

 Withanolide P (Mohanraj et al., 2018)  Withanolide J (Mohanraj et al., 

2018) 

 27-Deoxywithaferin A (Mohanraj et al., 2018)  Withanolide A (Mohanraj et al., 

2018; Khajuria 

et al., 2004; 

Soman et al., 

2012; Doma et 

al., 2012; Zhao 

et al., 2002; 

Tohda et al., 

2005; Kour et 

al., 2009; 

Nagella and 

Murthy, 2011; 

Soman et al., 

2013; Devi et 

al., 1996) 

 Withanolide N (Mohanraj et al., 2018)  Withanoside XI (Mohanraj et al., 

2018; Zhao et 

al., 2002) 

 Withanone (Mohanraj et al., 2018; 

Khajuria et al., 2004; 

Misra et al., 2005; 

 WithanosideVIII (Mohanraj et al., 

2018; Zhao et 

al., 2002) 

https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY002338
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY004118
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY002349
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY004177
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY003143
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY004857
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY003936
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005148
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY004118
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005185
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY004177
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005214
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY004857
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY008698
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005148
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY009147
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005170
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY009438
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005185
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011909
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005187
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005203
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY000292
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005214
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY000419
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Tong et al., 2011; 

Siddique et al., 2014) 

 17alpha-hydroxywithanolide D (Mohanraj et al., 2018)  Withanoside X (Mohanraj et al., 

2018; Zhao et 

al., 2002) 

 Withanolide S (Mohanraj et al., 2018)  Ashwagandhanolide (Mohanraj et al., 

2018; Subbaraju 

et al., 2006) 

 Withanolide C (Mohanraj et al., 2018)  (-)-Anaferine (Mohanraj et al., 

2018) 

 Withanolide L (Mohanraj et al., 2018)  (2R)-2-[(1S)-1-

[(8R,9S,10R,13S,14R,1

7S)-14,17-dihydroxy-

10,13-dimethyl-1-oxo-

4,7,8,9,11,12,15,16-

octahydrocyclopenta[a]

phenanthren-17-yl]-1-

hydroxyethyl]-4,5-

dimethyl-2,3-

dihydropyran-6-one 

(Mohanraj et al., 

2018) 

 Withanolide H (Mohanraj et al., 2018)  Sitoindoside IX (Garg et al., 

2018) 

 Withanolide I (Mohanraj et al., 2018)  Anahygrine (Garg et al., 

2018) 

 Withanolide K (Mohanraj et al., 2018)  4-Hydroxy-1,26-dioxo-

5,6:22,26-

diepoxyergosta-2,24-

dien-27-yl 6-o-

hexadecanoylhexopyra

noside 

(Mohanraj et al., 

2018) 

 Withanolide J (Mohanraj et al., 2018)  Coagulin Q (Mohanraj et al., 

2018; (Zhao et 

al., 2002) 

 Withanolide A (Mohanraj et al., 2018; 

Khajuria et al., 2004; 

Misra et al., 2005; 

Pramanick et al., 2008; 

Soman et al., 2012; 

Doma et al., 2012) 

 Withanoside IV (Mohanraj et al., 

2018; Tohda et 

al., 2005) 

 Withanoside X (Mohanraj et al., 2018; 

Tong et al., 2011) 

 Withanoside VI (Mohanraj et al., 

2018; Tohda et 

al., 2005) 

 Withanolide B (Mohanraj et al., 2018; 

Khajuria et al., 2004; 

Pramanick et al., 2008) 

 Withanolide B (Mohanraj et al., 

2018; Khajuria 

et al., 2004) 

 (2R)-2-[(1S)-1-

[(8R,9S,10R,13S,14R,17S)-14,17-

dihydroxy-10,13-dimethyl-1-oxo-

4,7,8,9,11,12,15,16-

octahydrocyclopenta[a]phenanthren-

17-yl]-1-hydroxyethyl]-4,5-dimethyl-

2,3-dihydropyran-6-one 

(Mohanraj et al., 2018) Seed Withaferin A (Mohanraj et al., 

2018) 

 Sitoindoside IX (Mohanraj et al., 2018; 

Jayaprakasam et al., 

2003) 

 Anahygrine (Mohanraj et al., 

2018) 

https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005227
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY000422
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY008698
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY001778
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY009147
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY004725
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY009438
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY010665
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005335
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY010666
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY010667
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011136
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011136
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011136
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011136
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011136
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011136
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011909
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY000717
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY006702
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY000422
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY007387
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY002648
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY002648
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011908
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011908
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011908
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011908
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011908
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011908
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY011908
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY004118
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005335
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY009363
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 Physagulin-d (Mohanraj et al., 2018; 

Jayaprakasam et al., 

2003) 

Stem Withaferin A (Mohanraj et al., 

2018; Khajuria 

et al., 2004; 

Mirjalili et al., 

2009) 

 Viscosalactone B (Mohanraj et al., 2018; 

Jayaprakasam et al., 

2003) 

 Withanolide B (Mohanraj et al., 

2018; Khajuria 

et al., 2004) 

 Withanoside IV (Mohanraj et al., 2018; 

Jayaprakasam et al., 

2003) 

 Withanolide A (Mohanraj et al., 

2018; Khajuria 

et al., 2004) 

Root Withasomidienone (Mohanraj et al., 2018)  Withanone (Mohanraj et al., 

2018; Khajuria 

et al., 2004) 

 

 

 Withanolide M (Mohanraj et al., 

2018) 

 

 Withanolide D (Mohanraj et al., 

2018; Zhao et al., 

2002) 

 

Pharmacological Effects of Withania somnifera on GBM Cell Behavior: 

Effect of Withania somnifera on Proliferation and Migration of GBM cells: 

Alcoholic leaf extracts of WS, Withaferin-A, Withanone, and Withanolide-A have 

demonstrated the ability to inhibit the growth or proliferation of glioma cells in a dose-dependent 

manner established in mice and human cell lines. Under moderate dosage administration, the 

growths of both human and mice cells were found to be severely arrested at S and G2/M phase 

by all four treatments with maximum effect within 48 to 72 hours. Strong reduction in the 

migration of mice glioma cells and human glioma cells were found to be more sensitive than 

mice (Shah et al., 2009). Withaferin-A also has the property to arrest cell growth at the G2/M 

phase in the human GBM cell line in low doses between 12 to 48 hours (Tang et al., 2020). 

Withaferin-A and AshwaMAX (a root extract with 4.3% w/w Withaferin-A content) inhibited 

the formation of neurosphere even in patient-derived glioblastoma cell lines while being treated 

in a dose-dependent manner within 24 hours of treatment. They also exhibited anticancer 

potentials in decreasing cell viability by almost 4-folds to a fewer than 20% ± 10 viable 

glioblastoma cells. The same study displayed the effect of AshwaMAX on nude mice with 

intracranial xenografts of GBM. Three types of GBM cells were used for xenografting, viz. U87-

MG, GBM2, and GBM39, wherein GBM2 and GBM39 were patient-derived cell lines. The 

growth rate of tumor stabilized within 25 to 28 days of implantation, and subsequently 40 

mg/kg/day AshwaMAX was delivered orally on every other day.  All mice with U87-MG 

implantations experienced huge weight loss and therefore had to be sacrificed immediately after 

a month of surgical implantations. However, the GBM39 xenograft mice survived a month 

longer. In these cases, the growth of GBM cells were observed to be inhibited to some extent, 

nonetheless their migration could not be halted. For GBM2 xenograft mice, the tumors began to 

regress rapidly within one week of initiation of treatment and almost disappeared in one month. 

Surprisingly, after one-month, GBM reappeared due to resistance or migration of cells and76% 

of the GBM2 xenograft mice survived 7 months following implantation (Chang et al., 2016). 

https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY000411
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY004118
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005904
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY002648
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY006702
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY000630
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY005214
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY003143
https://cb.imsc.res.in/imppat/phytochemical-detailedpage/IMPHY003936
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ASH-WEX (a leaf extract containing withanolides with Withaferin A as its major constituent in 

distilled water) has been found to be effective against C6 rat glioma intracranial allograft in 

Wistar strain male albino rat. Such rats with C6 intracranial allograft were administered with 

ASH-WEX equivalent to 140 mg/kg/day for consecutive 21 days. Reduced activity of MMP2 

and MMP9 activities were however found following ASH-WEX treatment (Kataria et al., 2016), 

which further indicated the inhibition of metastasis of respective cancer cells.   

Effect of Withania somnifera on GBM Cell Differentiation: 

Low dosages of alcoholic leaf extracts of WS, Withaferin-A, Withanone, and Withanolide-A 

led to morphological alterations in cells that ranged from polygonal structure with a small number 

of cytoplasmic processes to spindle form with lengthy cytoplasmic processes, resembling those 

generally seen in differentiated astrocytic cells (Shah et al., 2009). Aqueous leaf extracts of WS 

and Withanone induced differentiation in rat glioblastoma cells at low doses (Shah et al., 2015). 

Cucurbitacin (Helicteres angustifolia) - Withanone combined application at low doses caused 

differentiation in rat glioma cells (Garg et al., 2018) (Table 2). 

Effect of Withania somnifera on Apoptosis of GBM Cells: 

High doses of alcoholic leaf extracts of WS, WA, Withanone, and Withanolide - A have the 

property to induce apoptosis in both mice and human glioma cells (Shah et al., 2009). WA has 

been shown to display apoptotic activity on GBM cells. Following 6 hours of WA treatment, the 

expression of the pro-apoptotic proteins, Bim and Bad, were dramatically elevated; expression 

of the anti-apoptotic proteins BclxL and Bcl2 were marginally altered, along with the pro‐

apoptotic proteins, Bak and Bax, further indicating that the intrinsic apoptotic pathways might 

have initiated by the main regulators, Bim and Bad. Silencing Bim and Bad expressions 

alternately enhanced the viability of WA-treated GBM cell lines, thus validating the role of WA 

in the suppression of GBM cells (Tang et al., 2020) (Table 2).  

Table 2: Cellular reactions of glioblastoma cells in response to Withania 

somnifera treatment.  
Cell line Bioactive Compound (IC50 value) Effect Reference 

C6 (rat glioma) Alcoholic leaf extract (low dose) Differentiation (Shah et al., 2009) 

 Alcoholic leaf extract (5 µg/mL) Growth inhibition (Shah et al., 2009) 

 Alcoholic leaf extract (high dose) Apoptosis (Shah et al., 2009) 

C6 (rat glioma) Withaferin-A (low dose) Differentiation (Shah et al., 2009) 

 Withaferin-A (0.2 μmol/L) Growth inhibition (Shah et al., 2009) 

 Withaferin-A (high dose) Apoptosis (Shah et al., 2009) 

 Withanone (low dose) Differentiation (Shah et al., 2009) 

 Withanone (40 µg/mL) Growth inhibition (Shah et al., 2009) 

 Withanone (high dose) Apoptosis (Shah et al., 2009) 

 Withanolide-A (low dose) Differentiation (Shah et al., 2009) 

 Withanolide-A  

(35 µg/mL) 

Growth inhibition (Shah et al., 2009) 

 Withanolide-A (high dose) Apoptosis (Shah et al., 2009) 
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 Cucurbitacin (Helicteres angustifolia) (5 

nmol/L) Withanone (2.5 μmol/L) 

Differentiation (Tang et al., 2020) 

YKG1 (human glioma) Alcoholic leaf extract (low dose) Differentiation (Shah et al., 2009) 

 Alcoholic leaf extract (2.5µg/mL) Growth inhibition (Shah et al., 2009) 

 Alcoholic leaf extract (high dose) Apoptosis (Shah et al., 2009) 

 Withaferin-A (low dose) Differentiation (Shah et al., 2009) 

 Withaferin-A (0.1 μmol/L) Growth inhibition (Shah et al., 2009) 

 Withaferin-A (high dose) Apoptosis (Shah et al., 2009) 

 Withanone (low dose) Differentiation (Shah et al., 2009) 

 Withanone (30 µg/mL) Growth inhibition (Shah et al., 2009) 

 Withanone (high dose) Apoptosis (Shah et al., 2009) 

 Withanolide-A (low dose) Differentiation (Shah et al., 2009) 

 Withanolide-A (20 µg/mL) Growth inhibition (Shah et al., 2009) 

 Withanolide-A (high dose) Apoptosis (Shah et al., 2009) 

 Withaferin-A (0.01 μmol/L) + Withanone (5 

µg)  

Best Differentiation (Shah et al., 2009) 

U87 Withaferin-A (4.61 μmol/L) Growth inhibition (Shah et al., 2009) 

 Withaferin-A (10 μmol/L) Apoptosis (Tang et al., 2020) 

U87-MG Withaferin-A  

(0.31 μmol/L) 

Growth inhibition (Garg et al., 2018) 

 AshwaMAX (1.40 μmol/L)   

U251 Withaferin-A (1.37 μmol/L) Growth inhibition (Tang et al., 2020) 

 Withaferin-A (10 μmol/L) Apoptosis (Tang et al., 2020) 

HA1800 Withaferin-A (9.13 μmol/L) Growth inhibition (Tang et al., 2020) 

GBM2 (Patient Derived) 

(Human parietal-cortical 

glioblastoma cells) 

Withaferin-A (0.28 μmol/L) Growth inhibition (Chang et al., 2016) 

 AshwaMAX (root extract containing 4.3% w/w 

Withaferin-A) (0.19 μmol/L) 

Growth inhibition (Chang et al., 2016) 

GBM39 (Patient Derived) 

(Human parietal-cortical 

glioblastoma cells) 

Withaferin-A (0.25 μmol/L) Growth inhibition (Chang et al., 2016) 

 

 

AshwaMAX (root extract containing 4.3% w/w 

Withaferin-A) (0.22 μmol/L) 

Growth inhibition (Chang et al., 2016) 

 

Therefore, Ashwagandha is a plant that has been well-researched and studied against GBM. It 

not only provides a promising scope for generic treatment of GBM but also opens an avenue for 

a precise or personalized line of treatment by targeting specific proteins whose overexpression 

leads to GBM progression.  

Effect of Withania somnifera on Tumor Suppression Pathways Associated with GBM: 

The p53 tumor suppressor pathway is activated by the alcoholic leaf extracts of WS and 

Withanone (i-Factor), which results in the selective death of cancer cells (Shah et al., 2009; 

Widodo et al., 2007; Widodo et al., 2008). Treatment with WS greatly reduced the expression of 

cytokines that are pro-inflammatory such as Interleukin (IL)-1β, IL-6, chemokine IL-8, STAT-2, 

and Heat shock protein, HSP-70. On the other hand, reciprocal induction was observed for cyclin 

D and cyclin C, p38MAPK, caspase 6, and PI3K. Treatment with WS dramatically changed the 

JAK-STAT pathway, which controls MAP kinase signaling as well as the apoptotic process 
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(Shah et al., 2009; Aalinkeel et al., 2010). Furthermore, by modulating the p21-Bad pathway, 

Withaferin-A caused apoptosis in human GBM cell lines which is independent of p53. In 

addition, ATF4, XBP1, and CHOP were upregulated by WA which induced p21 expression. 

Therefore, WS and its phytochemicals can actually modulate several signaling pathways in order 

to induce apoptosis in human GBM cells as given in Figure 4 (Tang et al., 2020). 

Discussion: 

 
Figure 4. Mechanism of action of Withania somnifera specific phytochemicals in Glioblastoma Multiforme Management 

Glioblastoma multiforme is regarded as the worst form of Glioblastoma with an exceptionally 

low survival rate with existing therapies indicating limited effectiveness for long-term patient 

survival. Due to the variety of molecular alterations in GBM cases, drug-based treatment has a 

significant challenge as no single therapeutic medicine can target GBM (Madhu et al., 2023). The 

presence of both inter-tumor and intra-tumor heterogeneity in GBM cases poses difficulties for 

diagnosis and therapy. Phytochemicals, being an integral part of our regular diet, hold great 

potential in disease management if used wisely. There have been instances of several Indian 

medicinal plants which have plant-specific phytochemicals, viz., Ashwagandha, cinnamon, black 

pepper, turmeric etc. The molecular targets that are now being aimed at in clinical trials with 

drugs may also be focused on by phytochemicals from WS. Furthermore, phytochemical therapy 

has the potential to reduce and alleviate adverse side effects of anticancer drugs. WS and its 

phytochemicals have been found effective against a broad range of cancers like skin carcinoma 

(Kumar et al., 2017; Bhattacharjee, 2020; Sinkar and Samarth, 2019; Li et al., 2016), breast 

cancer (Umair et al., 2019; Dar et al., 2019; Thaiparambil et al., 2011; Sarkar et al., 2022; Rah et 

al., 2016; Gowtham et al., 2022; Kim et al., 2014; Jawarneh et al., 2022; Li et al., 2015), 

hepatocellular carcinoma, colon cancer, non-small cell lung cancer (Ahmed et al., 2022; Madhu 
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et al., 2022; Hsu et al., 2019), pancreatic cancer (Li et al., 2015; Yu et al., 2010), lymphoma 

(McKenna et al., 2015), prostate cancer (Setty et al., 2017; Srinivasan et al., 2007; Sanyal et al., 

2018; Yang et al., 2007), thyroid carcinoma (Samadi et al., 2010) ovarian cancer (Kakar et al., 

2014), melanoma (Halder et al., 2015) myeloma (Li et al., 2022), leukemia (Sanchez-Martin et 

al., 2017), and glioblastoma (Kataria et al., 2016; Shah et al., 2009; Tang et al., 2020; Chang et 

al., 2016; Garg et al., 2018) in-vitro and in-vivo. Few of the cancer types share some common 

pathways i.e., the JAK-STAT signaling study in prostate cancer cells. Presently, several reports 

suggest that abnormal JAK/STAT signaling plays a key role in glioma genesis and resistance to 

treatment (Aakinkeel et al., 2010; Ou et al., 2021). Negative regulation of the JAK-STAT 

pathway in turn stimulates the p53 pathway. Since a major cause of cancer is inactivation of p53, 

a mechanism of action of WS and its phytochemicals in GBM management is highly focused on 

the activation of p53 and p21. Alcoholic leaf extracts of WS, Withanone, and Withanolides force 

negative regulation of the JAK-STAT pathway which in turn stimulates activation of p53 

followed by induced p21 expression resulting in growth inhibition of GBM cells (Shah et al., 

2009). Withaferin A induces expression of p21 independent of p53, by positive regulation of 

ATF3 by CHOP-ATF4 (Tang et al., 2020). The activation of ATF4-ATF3-CHOP axis is 

important for the WA based therapy involving inhibition of cell cycle and apoptosis at the G2/M 

level (Kumar et al., 2023). The WA in low doses cause differentiation, in moderate doses they 

cause growth inhibition, and in high doses, they induce cell apoptosis by upregulating pro-

apoptotic proteins Bim and Bad (Fig. 4). Though the in-vivo model depicted an increase in 

survival time, it also displayed formation of resistant sublines of GBM and migration towards 

microenvironments where WS root extracts were not effective (Chang et al., 2016). While 

evaluating the capability of WS phytochemicals in targeting signaling pathways, the structural 

advantages of steroidal lactones have paved the way for their affinity towards the target. 

Molecular docking, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity), 

and molecular dynamics studies indicate stronger affinity and inhibition of the regulating 

pathways in Glioblastoma stem cells (Dhami et al., 2017; Swati et al., 2023; Arsalan et al., 2023; 

Lee et al., 2022). The utilization of WS's phytocompounds presents an opportunity for the 

development of targeted medications in the fight against GBM. Recent research has also paved 

the way for fractionalization of many novel glycoside compounds from WS, providing 

experimental evidence by testing its anti-angiogenic properties against various tumors such as 

Hepatocellular carcinoma (Lee et al., 2022). Though there have been limited studies on the high-

dosage side effects of Withanolides, few reports have suggested the possibility of liver damage 

in human patients occasionally with increased and regular dosages of WS extracts, with 

Withanone being the source of DNA damage. Although, cases showed quick recovery with drug 

withdrawal (Malik et al., 2013; Siddiqui et al., 2021). Persistent progress and discoveries in 

precision medicine, particularly in the realm of GBM treatments, it is essential to explore the 

WS-specific extracts domain. Extending the scope of research can enhance the prognosis and 

overall condition of GBM patients. The scientific community's continued investigation and the 
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potential breakthroughs offered by precision medicine hold great promise for revolutionizing 

GBM treatment (Iyer et al., 2023). 

Conclusion: 

This study provides a complete insight on the use of Withanolides as a potential and 

unexplored approach for the treatment of Glioblastoma multiforme. The study focuses on 

different withanolides present in WS by highlighting the preliminary results obtained from their 

screening against GBM and other cancer cell lines. The massive scope for several other 

formulations like AshwaMAX that focus merely on the WA content has shown inhibition of 

growth in glioblastoma cells. The effects of other WS-specific phytochemicals and their potential 

on current clinical target molecules of GBM are yet to be explored. The lack of pre-clinical or 

in-vivo studies on the effect of WS phytochemicals in glioblastoma multiforme management 

opens a scope for in-depth studies and research with WS-specific phytochemicals. With 

developed ample pre-clinical research data demonstrating favorable outcomes, along with 

therapeutic effects of WS phytochemicals on resistant GBM sublines and tumor 

microenvironments, there is a considerable prospect for WS to be recognized as a revolutionary 

advancement in glioblastoma multiforme management. Summarizing, the combinational or 

synergistic effect of the Withania-specific phytochemicals could be another alternative approach 

to the therapeutic use of WS in glioblastoma multiforme therapy. As the quest to find a novel and 

cheap therapeutic strategy against GBM persists, interventions by means of various extracts and 

phytochemicals from WS may ultimately emerge as a precise management system for GBM. 
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