

PEER

DOIttt:https://doi.org/10.52756/lbsopf.2024.e03.003

Discovery of Rim Region Between Core and Surface of Proteins Amal Kumar Bandyopadhyay^{1#}*, Sahini Banerjee^{2#} and Somnath Das^{3#}

Keywords: Rim-region, topological pattern, interior cavity, non-bonded interaction, protein compaction

Abstract:

The crystal structure reveals the complexities of protein component organization from the core to the surface. In general, the existence of core and surface in protein structure is well known. Here, we raise the question of how this core and surface, respectively, end and begin. To further understand the concerns, we did a comprehensive investigation on high-resolution structures of three protein families [ADH (Alcohol Dehydrogenase), Glyceraldehyde 3-Phosphate Dehydrogenase (GDH), and Malate Dehydrogenase (MDH)] from various domains of life utilizing authentic methods. The results demonstrate the presence of a zone (designated as the rim), which has separate properties from the core and the surface. The Kyte Doolittle grand average hydrophobicity (KD) of the core, surface, and rim are positive, negative, and neutral, respectively. Compared to the rim-zone, the core and surface have more hydrophobic residues and beta-strand structure, and charged residues and coil structure, respectively. In terms of polar residues and helix structure, compared to the rim, the core and surface have essentially similar but lower contents. The core's long β -sheets and shell-waterfilled cavities may restrict residue compaction in this location. These analyses, thus, demonstrate that the archaea employed a distinct approach to fine-tune the compaction of their core compared to the bacteria and eukaryotes. Simultaneously, the dominance of the coil at the surface appears to produce a similar result. Overall, our study provides evidence that the rim-zone has a very distinct structure from the core and surface. The study that applies to other proteins finds application in protein structure bioinformatics.

Introduction:

The crystal structure reveals how the codes in a protein's primary sequence are expressed in the functional state of the structure. It is really interesting to know the pattern that may exist in such a complex structure (Kendrew et al., 1958; Dill and MacCallum, 2012; Rovers& Schapira, 2022). Orthologous proteins from Archaea (ar), Bacteria (ba), and Eukaryotes (eu) have comparable topologies and biological functions despite differing in basic sequences (Bandyopadhyay et al., 2007; Bottini et al., 2013; Bandyopadhyay et al., 2019; Flower et al., 2000; Petitjean et al., 2015). In true solvent conditions, the primary sequence generates the tertiary structure through weak forces and intermediate secondary structures (Anfinsen, 1973; Dill, 1990; Bandyopadhyay et al., 2020). In terms of protein structure, amino acid residues are preferentially arranged from the core to the surface. The core and surface of a globular protein are typically enriched with hydrophobic (A, V, F, I, L, M, C) and hydrophilic residues,

Amal Kumar Bandyopadhyay Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India E-mail: Abbanerjee@biotech.buruniv.ac.in Sahini Banerjee Department of Biological Sciences, Indian Statistical Institute, Kolkata, West Bengal, India Somnath Das Department of Education, CDOE, The University of Burdwan, West Bengal, India #Authors equally contributed *Corresponding Author: akbanerjee@biotech.buruniv.ac.in

© International Academic Publishing House, 2024

Dr. Somnath Das, Dr. Jayanta Kumar Das, Dr. Mayur Doke, Dr. Vincent Avecilla (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 3. ISBN: 978-81-978955-7-9; pp. 41-96; Published online: 30thNovember, 2024

respectively (Lim, 1974; Rose et al., 1985; Stollar& Smith, 2020). Hydrophilic amino acids are classified into two types: ionizable (D, E, H, R, K) and non-ionizable (S, T, N, Q, Y, W) (Betts & Russell, 2003). Ser and charged residues are particularly important in determining protein solubility (Trevino et al., 2007). These hydrophobic and charged residues, in particular, tend to form helix and strand configurations (Williams et al., 1987). Aside from amino acid residues, SW plays an essential role in globular protein stability and specificity (Finney, 1987). Although there is no SW in the globular protein's core, SWs can be found in the inner cavity, which is generated by the interaction of several protein atoms (Ernst et al., 1995). These SWs are found inside and on the cavity's entry face, but the first type has a significantly larger interaction multiplicity (Bandyopadhyay et al., 2019). It would be interesting to learn more about the atomic composition, SW content, and region-specific distribution of these cavities. SW and protein atoms interact by non-covalent interactions such as hydrogen bonding, electrostatic (ion-pair, cation- π , anion- π), and hydrophobic (alkyl-alkyl, π - π , π - σ , etc.) to contribute to stability (Baker & Hubbard, 1984; Mecozzi et al., 1996; Martinez & Iverson, 2012; Islam et al., 2019; Surti et al., 2020). There were structural differences between the protein's core and surface. This region of accessibility is known as the in-between or rim (Lins et al., 2003; Sen al., 2017). Alcohol dehydrogenase (ADH), Gupta et glyceraldehyde-3-phosphate dehydrogenase (GDH), and malate dehydrogenase (MDH) are oxydoreductases that use NAD+ as a cofactor to transform an alcoholic substrate into an oxidized product (Williamson & Paquin, 1987; Soukri et al., 1989; Song et al., 1990; Gutheil et al., 1992; Madern, 2002; Ceccarelli et al., 2004; Xiao et al., 2023). All of these enzyme types create multimeric structural complexes to enhance NAD+ and substrate binding at the interface (Song et al., 1999; Dalhus et al., 2002; Moon et al., 2011). In the case of these three protein families, the structural database is extensive. There is little known about the rim region's structure and interactions. A comparative analysis of the distributions and non-bonded interactions of amino acid residues, residue classes, secondary structures, cavities, and SWs in these three accessible zones appears to be useful.

In the current study, we addressed and provided evidence on the aforementioned concerns using representative crystal structures of three protein families from each of the three domains of life. We have done this analysis by using our and others' authentic automated procedures. Our study, based on extensive studies of three protein structures, demonstrates that the rim region exists between the core and the surface. We hypothesize that this rim region acts as a container and carrier of protein structure and function. We believe that this rim effect is present in nearly all structures. Tour study finds application in the field of protein bioinformatics.

Materials and Methods Retrieval of Dataset

The 3D structures (Table 1) of ADH, GDH, and MDH of different domains of life (ar, ba, and eu) were procured from the Research Collaboratory for Structural Bioinformatics (RCSB) protein data bank (PDB) (Berman et al., 2000). Each of the structures was minimized using Autominv1.0 (Islam et al., 2018) in the presence of SW interacting with protein atoms within

4.0Å distance as in our earlier studies (Nayek et al., 2014; Biswas et al., 2020; Banerjee et al., 2021; Roy et al., 2024).

	ADH			GDH			MDH	
ar	ba	eu	ar	ba	eu	ar	ba	eu
1h2b	1rjw	1adb	1b7g	1euh	1dss	106z	1b8p	1civ
[16]	[15]	[17]	[16]	[28]	[23]	[13]	[22]	[30]
1jvb	3ox4	1b15	1cf2	1gad	1j0x	1v9n	1bdm	1mld
[15]	[23]	[17]	[9]	[19]	[21]	[20]	[21]	[18]
1rhc	3uog	1cdo	1uxt	1gd1	1k3t	2d4a	1emd	1sev
[22]	[16]	[18]	[39]	[19]	[22]	[17]	[26]	[18]
2eer	4cpd	1d1t	2czc	1obf	1vsu	2x0i	1guz	2dfd
[13]	[23]	[16]	[12]	[17]	[26]	[16]	[6]	[18]
2h6e	4eez	1ee2	2yyy	2d2i	1ywg	4bgu	1gv1	2fn7
[16]	[15]	[17]	[28]	[14]	[18]	[18]	[15]	[21]
4jbg	4gkv	1ht0		2g82	2i5p	4bgv	1ur5	2g76
[15]	[10]	[21]		[11]	[22]	[8]	[17]	[9]
6c75	4j6f	1mc5		3gnq	2vyn	6ihd	1z2i	2hjr
[32]	[18]	[14]		[19]	[20]	[23]	[24]	[11]
	4zбk	1mg5		4dib	3cps		3d5t	2i6t
	[13]	[17]		[17]	[23]		[21]	[17]
	5yln	1u3t		5ld5	3pym		3fi9	3i0p
	[11]	[14]		[19]	[24]		[16]	[20]
		3wle		5utm	3qv1		3flk	4h7p
		[26]		[18]	[18]		[18]	[15]
		4jji		6fzh	3sth		3gvh	4mdh
		[19]		[18]	[24]		[19]	[25]
		4rqt			4k9d		3nep	4plh
		[16]			[19]		[7]	[14]
		4wбz			41sm		3p7m	4plt
		[20]			[14]		[12]	[20]
		5ilg			5c7i		3tl2	4uuo
		[12]			[18]		[16]	[19]
					5tso		4e0b	5nue
					[15]		[19]	[19]
							4ror	5zi2
							[13]	[17]
							4tvo	6um4
							[15]	[11]
							5ujk	7mdh
							[20]	[21]
							6aoo	
							[19]	
							6bal	

Table 1. Details on protein structures used in the study.

				[20]	
				6itk [19]	
				[19]	
				6itl [14]	
				[14]	

Protein data bank files of Alcohol Dehydrogenase (ADH), Glyceraldehyde 3-Phosphate Dehydrogenase (GDH), and Malate Dehydrogenase (MDH) from archaea (ar), bacteria (ba) and eukaryote (eu) domains. Only the first chain was processed in each case. Each of these structures was minimized in the presence of shell-water interacting with protein atoms within 4.0Å distance. The value of the third bracket indicates the number of cavities in this protein.

Protein residue accessibility (ASA) and accessibility regions

We used the novel Surface Racer v5.0 program (Tsodikov et al., 2002; Banerjee et al., 2018) to extract the accessibility and cavity details of the protein atom. Absolute accessibility of protein atoms has been converted into relative accessibility of residue. In this case, N, CA, C, and O are considered as the main-chain and the rest of the atoms of a residue are taken as side-chain. The relative accessibility of the residue's main-chain, side-chain, and all-atoms was determined by the absolute value of their folded (Tsodikov et al., 2002) and unfolded (Zielenkiewicz & Saenger, 1992) states as earlier (Bandyopadhyay et al., 2019). Based on overall KD value, the accessibility of proteins was divided into three regions namely core (ASA \leq 15Å²), rim (ASA>15 Å² and \leq 35 Å²), and surface (ASA>35 Å²) (Sen Gupta et al., 2017; Banerjee et al., 2018).

Details on the residue, cavity, shell-water, and non-covalent interactions

Relative to these three regions (core, rim, and surface), domains of life (ar, ba, eu) specific, protein-family (ADH, GDH, MDH) specific structures were compared to the average properties of protein residue composition, residue-class composition, Kyte-Doolittle hydrophobicity (Kyte & Doolittle, 1982; Islam et al., 2018), secondary structure type (Helix/Strand/Coil) (Islam et al., 2018), cavity details (Sen Gupta et al., 2017), non-bonded interactions (Islam et al., 2019), SW and its interactions, etc. The composition, secondary-structure details, accessibility-details of cavity residues, and their association and interaction with SWs were also extracted for comparison. Residues, A, V, L, I, F, M, C, P, G, residues, S, T, N, Q, Y, W and residues, H, R, K, E, D were taken as hydrophobic, hydrophilic, and charged types, respectively (Betts & Russell, 2012). The secondary structure details of the amino acid residue were taken from the crystal structure.

Protein residue and shell-water interaction

Biovia Discovery Studio 2020 was used to determine all atomic level non-bonded interactions that include hydrogen bond, ion-pair, π - π , π -cation, π -anion, π -amide, π -sigma, π -alkyl, and alkyl-alkyl, etc. for the above-mentioned accessibility regions of a protein. These

interactions were processed using an automated AWK script to obtain different inter-residue interactions (Islam et al., 2018; Mitra et al., 2019).

Automated extraction of accessibility (ASA) region-specific details

Our database has 108 protein PDB structures in it. Thus, the total number of proteins to analyze is 324, as each protein has three accessibility (ASA) regions. We used a fully automated AWK script (that makes use of the Surface Racer program to determine accessibility regions and cavities) to properly and accurately extract the properties of all the items mentioned above (Nayek et al., 2014; Gupta et al., 2014a; Gupta et al., 2014b; Nayek et al., 2015a; Nayek et al., 2015b; Banerjee et al., 2015). The script runs in a Cygwin environment in a user-friendly and error-free manner. It takes all PDB structures as an input that is present in the working directory. Outputs are redirected in Excel format for the ease of post-run analyses. The binary version of the script can be obtained upon request.

Statistical Analysis

All statistical tests were performed using paired t-test if not stated otherwise. P-value, thus obtained, was used to judge against the null hypothesis at the 5% level using the standard two-tailed procedure. The *p*-value is included with the relevant data in the results (Banerjee et al., 2021; Roy et al., 2023).

Results

Residue, residue-class, and secondary structure distribution in co, rm, and su zones

The primary goal of our research is to understand the topological characteristics and patterns of enzymes as they work in various earths' conditions (Bandyopadhyay & Sonawat, 2000; Gupta et al., 2015). We investigated crystal structures from ADH, GDH, and MDH enzymes (Table 1). A typical crystal structure shows how the co, rm, and su residues and a typical cavity are arranged (Figure 1a). The properties of archaea's primary sequence differ from those of ba and eu (Figure 1b and Figure 2a-h). The overall KD (GRAVY) of co, rm and su are positive, neutral and negative, respectively (Figure 1c for MDH's ba and Figure 3a-c for ADH's ar, ba, and eu; d-f for GDH's ar, ba, and eu; g-h for MDH's ar and eu, respectively). Further, co and su regions are significantly abundant in hb and cr residue classes, respectively. Again, these two regions have in common the abundance of po class (Figure 1d, e). These observations of ba MDH's are also true in other domains of life specific enzyme classes (Figure 4a-c for ADH's ar, ba and eu; d-f for GDH's ar, ba and eu; and g-h for MDH'a ar and eu; and Figure 5a-c for ar ADH's hb, hl, and cr; d-f for ba ADH's hb, hl, and cr; g-i for eu ADH's hb, hl, and cr; j-l for archaeal GDH's hb, hl, and cr; Figure 6a-c for ba GDH's hb, hl, and cr; d-f for eu GDH's hb, hl, and cr; g-i for archaeal MDH's hb, hl and cr and j-k for eu MDH's hb, hl, and cr, respectively). Notably, for rm-region, which is between the co and su, these classes of amino acids are negligible. Relative to this region, these features of the amino acid compositions and classes of the co and the su regions are statistically significant.

The secondary structure, which is between the primary and tertiary structures, determines the topology and conformation of enzyme classes (Bandyopadhyay et al., 2001). Here, we raise the question as to how these secondary structures are distributed in these regions (core, rim and surface). Here, we see that when normalized, and average helix-content is almost equivalent to co and su, and much higher than that of rm. The strand and coil, in the core and surface are uniquely, and significantly dominating over the rim region, respectively (Figure 1f for ba MDH's helix, strand and coil; and Figure 7a-c for archaeal ADH's helix, strand, and coil; d-f for ADH's ba helix, strand, and coil; g-i for ADH's eu helix, strand and coil; j-l for GDH's archaeal helix, strand, and coil; Figure 8a-c for GDH's ba helix, strand and coil; d-f for GDH's eu helix, strand, and coil; g-i for archaeal helix, strand and coil and j-l for MDH's eu helix, strand, and coil, respectively). Here, it is important to mention that although the accessibility regionspecific differential pattern in amino acid compositions, residue classes, and secondary structures described above are true and statistically significant in all domains of life and enzyme classes, their normalized scales show domains of life specific and also enzyme class specific variation (Table 2 and 3). It should be noted here that although the rm's preference for the protein structure components is low, this region has a strong preference towards shell-water (see below).

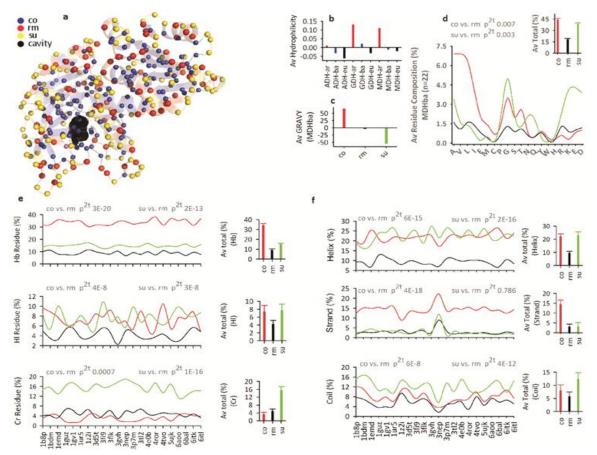


Figure 1. Details on residue composition, residue-class composition and secondary structure types.

Variation of amino acid composition, class and secondary structure in different accessibility regions along with sequence hydrophobicity relative to domains of life. **a**, A general presentation of a crystal structure where the residues (C α) in co (blue), rm (red) and su (yellow) are shown with a typical cavity (black). **b**, Av KD of sequences in ar, ba, and eu. **c**, Av KD (n=22 PDBs) of ba MDH's co, rm and su regions. **d**, The average residue composition in the co (red), rm (black) and su (green) regions are shown with *p*-values (p^{2t}) for test of significance in co vs. rm, and su vs. rm format. **e**, The average residue class (hb, hl and cr) composition in the co (red), rm (black) and su (green) regions with *p*-values. **f**, The average secondary structure type in the co (red), rm (black) and su (green) regions with *p*-values. In each case, the total value of each of the three regions is shown as inset.

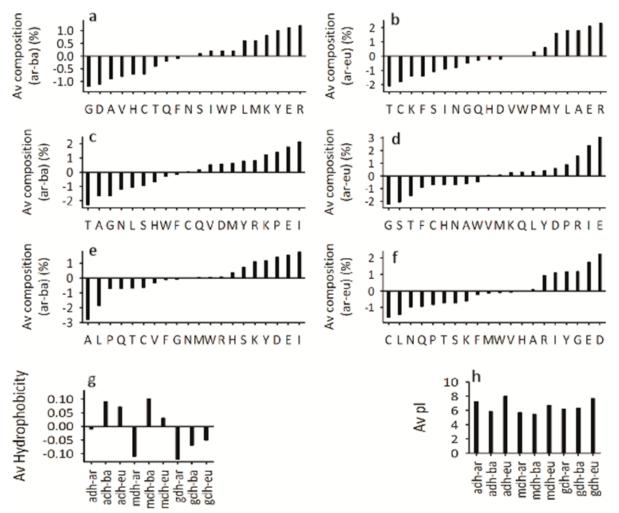


Figure 2. Relative residue compositions of archaeal proteins.

Average (av) normalized (%) relative composition of ar in reference to ba, and eu for ADH (a and b), GDH (c and d), and MDH (e and f), respectively. Grand average Kyte-Doolittle hydrophobicity of AD, GDH and MDH for ar ba and eu (g). Average pI value ADH, GDH and MDH for ar ba and eu (h).

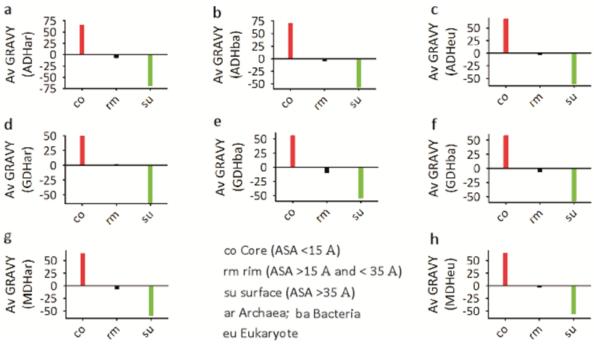


Figure 3. Details on ASA-region-specific GRAVY of proteins in our dataset.

Kyte-Doolittle overall hydrophobilicy (GRAVY) for the co, rm and su regions of ar (**a**), ba (**b**) and eu (**c**) enzyme, ADH. Similarly the GRAVY of co, rm and su regions of ar (**d**), ba (**e**) and eu (**f**) enzyme, GDH and ar (**g**), and eu (**h**) enzyme, MDH.

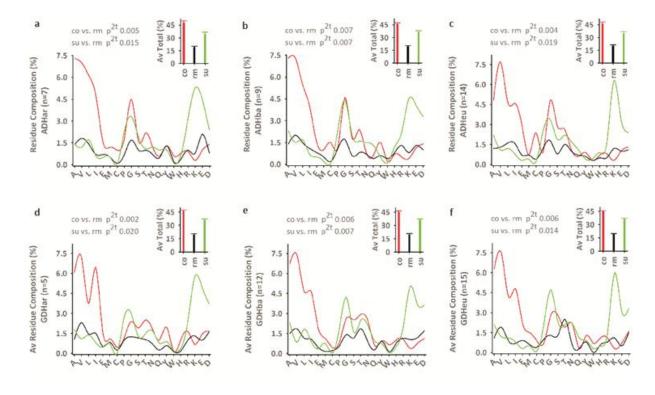
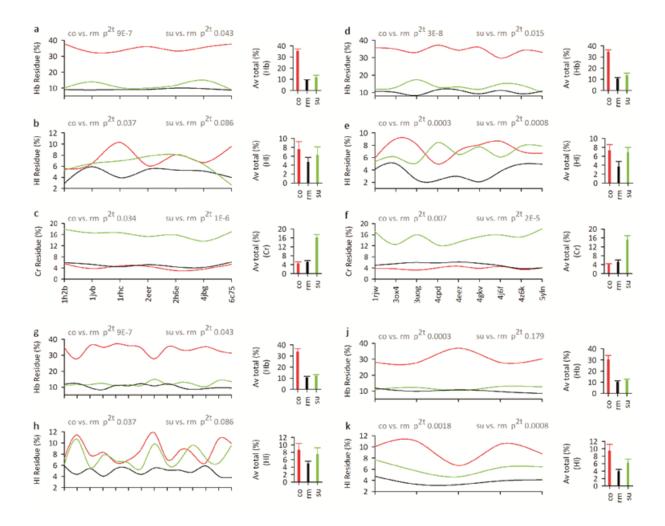



Figure 4. ASA-region-specific normalized average residue compositions of proteins of our dataset.

Average (av) normalized (%) amino acid residue composition of core (co, red), rim (rm, black) and surface (su, green) for ADH (**a** for ar, **b** for ba and **c** for eu), GDH (**d** for ar, **e** for ba and **f** for eu) and MDH (**g** for ar, **h** for eu). Individual and total values of these three regions are shown in each case. Significance of the difference of mean observation is tested using paired t-test using two tailed procedures.

Discovery of rim region between core and surface of proteins

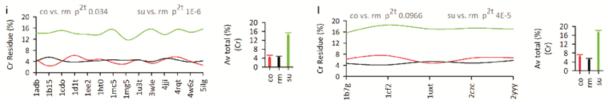


Figure 5. ASA-region-specific normalized average residue class compositions of proteins of our dataset.

Average (av) normalized (%) amino acid classes composition of core (co, red), rim (rm, black) and surface (su, green) regions of ar's ADH (**a**, hb; **b**, hl; **c**, cr), ba's ADH (**d**, hb; **e**, hl; **f**, cr), eu's ADH (**g**, hb; **h**, hl; **i**, cr) and ar's GDH (**j**, hb; **k**, hl; **l**, cr). The region-specific average plots of all the proteins are shown as bars on the side of each protein-specific profile plot. The significance of the difference of mean observation is tested using a paired t-test using a tailed procedure.

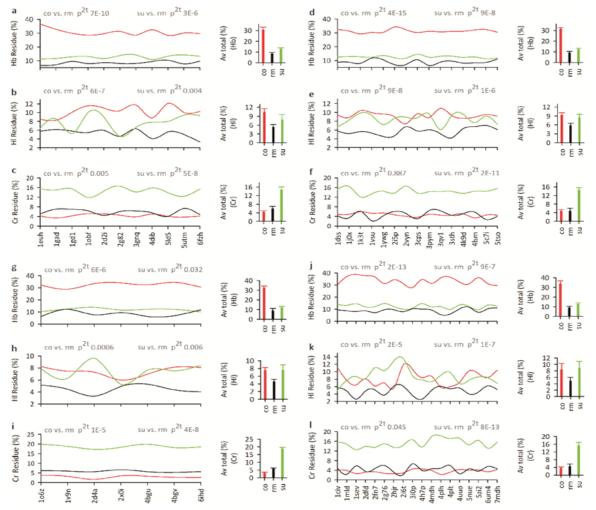


Figure 6. ASA-region-specific normalized average residue class compositions of proteins of our dataset (continued).

Average (av) normalized (%) amino acid classes composition of core (co, red), rim (rm, black) and surface (su, green) regions of ba's GDH (**a**, hb; **b**, hl; **c**, cr), eu's GDH (**d**, hb; **e**, hl; **f**,

cr), ar's MDH (\mathbf{g} , hb; \mathbf{h} , hl; \mathbf{i} , cr) and eu's MDH (\mathbf{j} , hb; \mathbf{k} , hl; \mathbf{l} , cr). The region-specific average plots of all the proteins are shown as bars on the side of each protein-specific profile plot. The significance of the difference of mean observation is tested using a paired t-test using a tailed procedure.

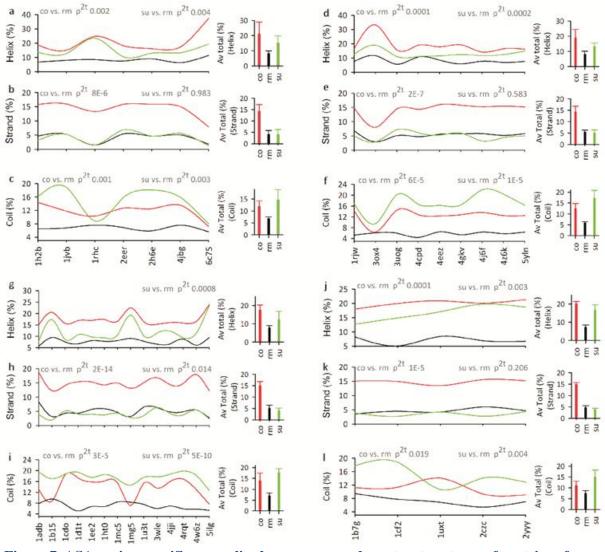


Figure 7. ASA-region-specific normalized average secondary structure types of proteins of our dataset.

Average (av) normalized (%) secondary structure types of core (co, red), rim (rm, black) and surface (su, green) regions of ar's ADH (**a**, hb; **b**, hl; **c**, cr), ba's ADH (**d**, hb; **e**, hl; **f**, cr), eu's ADH (**g**, hb; **h**, hl; **i**, cr) and ar's GDH (**j**, hb; **k**, hl; **l**, cr). The region-specific average plots of all the proteins are shown as bars on the side of each protein-specific profile plot. The significance of the difference of mean observation is tested using a paired t-test using a tailed procedure.

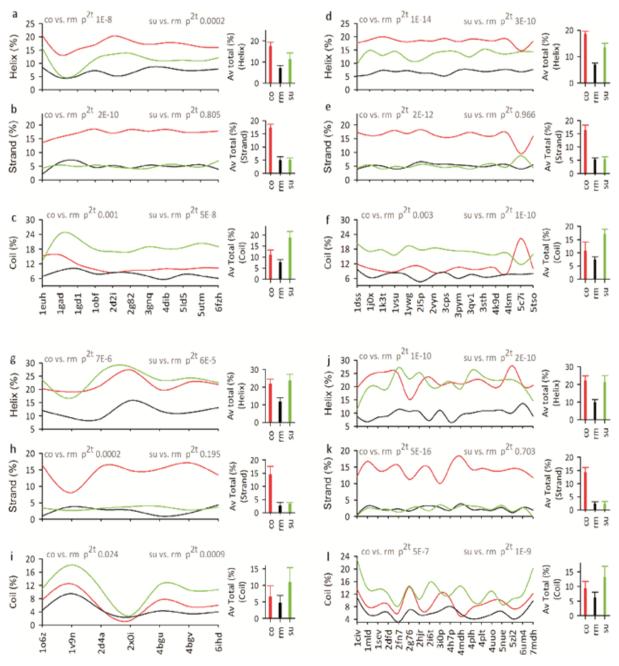


Figure 8. ASA-region-specific normalized average secondary structure types of proteins of our dataset (continued).

Average (av) normalized (%) secondary structure types of cores (co, red), rim (rm, black) and surface (su, green) regions of ba's GDH (**a**, hb; **b**, hl; **c**, cr), eu's GDH (**d**, hb; **e**, hl; **f**, cr), ar's MDH (**g**, hb; **h**, hl; **i**, cr) and eu's MDH (**j**, hb; **k**, hl; **l**, cr). The region specific average plots of all the proteins are shown as bars on the side of each protein-specific profile plot. The significance of the difference of mean observation is tested using a paired t-test using a tailed procedure.

Class.									
	cohb	rmhb	suhb	cohl	rmhl	suhl	cocr	rmcr	sucr
MDH-ar	32.4	8.6	11.9	7.5	4.5	7.5	3.0	5.9	18.7
MDH-ba	33.9	8.9	14.8	7.3	4.2	7.7	3.1	4.8	15.4
MDH-eu	33.6	8.9	12.4	8.3	4.8	8.8	3.5	4.4	15.2
ADH-ar	35.2	9.2	11.5	7.5	4.7	6.2	4.4	5.1	16.1
ADH-ba	34.3	10.3	13.4	7.3	3.6	6.8	4.0	5.2	15.1
ADH-eu	33.7	10.4	12.1	8.6	4.9	7.5	4.2	4.4	14.3
GDH-ar	30.2	10.1	11.8	9.4	3.8	6.1	6.4	5.0	17.1
GDH-ba	30.7	8.4	12.7	10.3	5.3	7.7	4.4	5.9	14.6
GDH-eu	31.4	8.9	12.6	9.3	5.7	8.4	4.7	4.6	14.4

Table 2. Domain-specific, enzyme-class-specific and ASA-specific Normalized (%) residue
class.

Domains of life specific, enzyme class specific and accessibility region (co, rm and su) specific percentage of residue classes such as hydrophobic (hb), hydrophilic (hl) and charged (cr).

Table 3. Domain-specific, enzyme-class-specific and ASA-specific Normalized (%)
secondary structure types.

	co-h%	rm-h%	su-h%	co-s%	rm-s%	su-s%	со-с%	rm-c%	su-c%
MDH-ar	21.9	11.8	23.7	14.5	2.6	3.4	6.5	4.7	11.0
MDH-ba	22.0	9.3	22.6	14.4	2.9	3.0	7.9	5.6	12.2
MDH-eu	22.1	9.7	21.2	14.1	2.3	2.3	9.2	6.1	13.0
ADH-ar	21.1	8.2	15.2	14.3	4.1	4.1	11.8	6.7	14.5
ADH-ba	18.8	8.1	13.0	14.4	5.3	5.0	12.4	5.8	17.2
ADH-eu	17.6	7.7	12.3	14.9	5.0	4.0	13.9	7.0	17.6
GDH-ar	20.1	7.1	16.7	14.9	4.6	3.6	11.0	7.3	14.8
GDH-ba	17.3	7.0	11.2	17.2	5.0	5.1	10.9	7.6	18.8
GDH-eu	18.5	6.7	13.4	16.2	5.1	5.1	10.7	7.3	16.9

Domains of life specific, enzyme class specific and accessibility region (co, rm and su) specific percentage of secondary structure types such as helix (h), strand (s) and coil (c)

Table	4. Protei	in-specif	ic shell-	water-spe	cific cav	ity detai	ls.

ADH_ar	Prot res	fCv	fCv woW	ADH_ba	Prot res	fCv	fCv woW	ADH_eu	Prot res	fCv	fCv woW
1h2b	341	16	1	1rjw	338	15	7	1adb	373	17	7
1jvb	338	15	6	3ox4	377	23	8	1b15	253	17	10
1rhc	330	22	4	3uog	332	16	4	1cdo	370	18	5
2eer	346	13	4	4cpd	343	23	8	1d1t	371	16	7
2h6e	321	16	6	4eez	338	15	2	1ee2	371	17	2

D '	c •	•	1 .		c	c	•
Discovery	of rim	region	hetween	core and	surface	of 1	nroteins
Discovery	or min	region	Detween	core and	surrace	or	proteins

4.1	221	1.5		4 1	225	10	1	11.0	272	01	
4jbg	331	15	2	4gkv	335	10	1	1ht0	372	21	0
6c75	377	32	19	4j6f	346	18	5	1mc5	368	14	2
				4z6k	343	13	1	1mg5	253	17	2
				5yln	343	11	8	1u3t	371	14	3
								3wle	333	26	3
								4jji	375	19	0
								4rqt	373	16	3
								4w6z	345	20	7
								5ilg	262	12	3
	<u> </u>							0			
GDH_ar	Prot res	fCv	fCv woW	GDH_ba	Prot res	fCv	fCv woW	GDH_eu	Prot res	fCv	fCv woW
1b7g	338	16	6	1euh	470	28	6	1dss	329	23	6
1cf2	335	9	1	1gad	326	19	6	1j0x	328	21	12
1uxt	497	39	10	1gd1	328	19	1	1k3t	355	22	9
2czc	333	12	3	1obf	329	17	5	1vsu	322	26	10
2yyy	342	28	12	2d2i	335	14	3	1ywg	332	18	8
				2g82	326	11	3	2i5p	300	22	9
				3gnq	332	19	5	2vyn	325	20	6
				4dib	320	17	14	3cps	330	23	7
				51d5	338	19	7	3pym	330	24	10
				5utm	339	18	3	3qv1	329	18	8
				6fzh	331	15	2	3sth	334	24	5
								4k9d	333	19	6
								4lsm	326	14	3
								5c7i	326	18	7
								5tso	328	15	4
MDH_ar	Prot res	fCv	fCv woW	MDH_ba	Prot res	fCv	fCv woW	MDH_eu	Prot res	fCv	fCv woW
106z	291	13	2	1b8p	322	22	5	1civ	369	30	7
1v9n	335	20	5	1bdm	316	21	5	1mld	311	18	5
2d4a	301	17	11	1emd	309	26	10	1sev	311	18	6
2x0i	284	16	12	1guz	304	6	1	2dfd	310	18	3
4bgu	301	18	4	1gv1	304	15	8	2fn7	296	21	9

Discovery of rim region between core and su	urface of proteins
---	--------------------

					-						
4bgv	320	8	2	1ur5	297	17	2	2g76	301	9	4
6ihd	297	23	21	1z2i	348	24	7	2hjr	311	11	5
				3d5t	319	21	7	2i6t	279	17	8
				3fi9	320	16	4	3i0p	359	20	3
				3flk	346	18	6	4h7p	309	15	1
				3gvh	316	19	8	4mdh	329	25	5
				3nep	301	7	2	4plh	311	14	6
				3p7m	302	12	4	4plt	315	20	5
				3tl2	309	16	2	4uuo	323	19	16
				4e0b	299	19	5	5nue	324	19	3
				4ror	316	13	4	5zi2	336	17	3
				4tvo	323	15	0	6um4	321	11	0
				5ujk	312	20	7	7mdh	347	21	11
				6aoo	313	19	5				
				6bal	308	20	2				
				6itk	315	19	7				
				6itl	310	14	1				

Frequency of total water, total cavity and number of water-unfilled cavities in each representative protein in each of the three domains (ar, ba and eu) of each of the three classes of enzyme (ADH, GDH and MDH). Cv, cavity; *f*, frequency; wo, without; W, shell-water; freq, frequency.

The interior cavity of the protein and its properties. (a) The typical cyrysy type cavity is constituted by atoms of co (grey), rm (green) and su (blue). It also has four moles of SWs. Cavity atoms in coil (C) and strand (S) are labelled and helix atoms are left unlabelled. (b) The grand average propensity of amino acid residues in the cavity. (c) Correlation between the total SW of the protein and the total SW of the cavity. (d) Correlation between the total SW and inside SW of the cavity. (e) Correlation between the total and inside interactions of the cavity atom. (f) Average distance of interaction of SW inside the cavity with its atoms. (g) Types of cavity and its frequency. (h) Cavity type specific water content. (i) Correlation between the cavity type specific frequency and their SW frequency. (j) Correlation between the cavity type specific frequency and their SW interaction frequency.

TW, total water in protein; Cv TW, cavity's total water; Cv Wins, cavity's inside water; Wint ins, water interaction with cavity atoms from inside; Wint T, water (inside and outside) interaction with cavity atoms; CvW:TW, total cavity water : total protein water in %; Cv_atom, protein specific total unique atoms that are present in all cavity; T_rs, total residue in protein; Cv_hT, helix% in cavity, Cv_sT, Strand% in cavity; Cv_cT, coil% in cavity; Cv_coT, cavity% in core region; Cv_rmT, cavity% in rim region; Cv_suT, cavity % in surface region; Dist, distance in Angstrom between the water and cavity atom interaction.

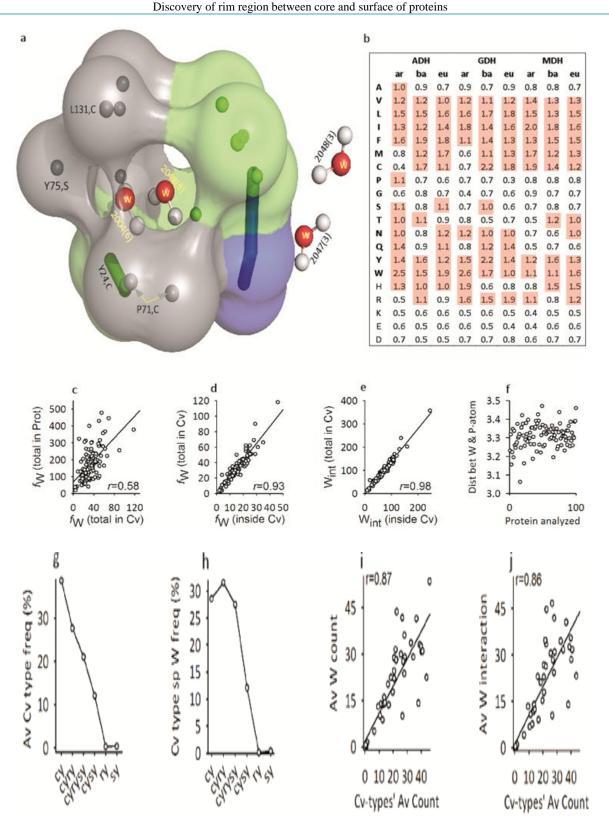


Figure 9. Cavity, its interaction and types.

Domain	protein	TW	Cv TW	Cv Wins	Wint ins	Wint T	CvW:T W	Cv_atom	$\mathbf{T}_{\mathbf{rs}}$	Cv_hT	Cv_sT	Cv_cT	Cv_coT	Cv_rmT	Cv_suT	Dist
D	ıd		С	Cł	M	M	C	Cv		C	C	C	C	CA	C	
	1h2b	286	51	26	108	147	17.8	131	341	44	22	65	92	19	20	3.23
	1jvb	187	27	10	33	56	14.4	154	338	50	62	42	108	27	19	3.32
-ar	1rhc	143	37	19	90	115	25.9	155	330	74	31	50	102	33	20	3.16
ADH-ar	2eer	205	19	10	41	54	9.3	102	346	45	28	29	82	11	9	3.22
A	2h6e	205	30	11	59	85	14.6	136	321	55	35	46	91	32	13	3.35
	4jbg	141	27	16	62	75	19.1	82	331	23	28	31	65	11	6	3.20
	6c75	98	25	16	86	97	25.5	221	377	168	20	33	174	24	23	3.34
	1b7g	265	25	8	34	53	9.4	108	338	36	36	36	79	11	18	3.26
-ar	1cf2	231	25	12	46	65	10.8	81	335	44	14	23	70	4	7	3.25
GDH-ar	1uxt	256	90	29	136	239	35.2	314	497	109	79	126	263	37	14	3.27
5	2czc	139	19	9	27	38	13.7	69	333	31	23	15	51	11	7	3.28
	2ууу	191	29	15	50	71	15.2	149	342	70	41	38	113	21	15	3.37
	106z	157	38	16	75	109	24.2	114	291	59	33	22	100	13	1	3.30
н	1v9n	183	44	19	90	120	24	152	335	42	10	100	98	21	33	3.31
H-8	2d4a	42	7	3	13	19	16.7	109	301	44	44	21	82	21	6	3.32
MDH-ar	2x0i	38	4	4	17	17	10.5	109	284	66	39	4	87	15	7	3.06
	4bgu	478	55	22	90	135	11.5	132	301	75	31	26	111	15	6	3.25
	4bgv	313	24	10	30	46	7.7	54	320	23	28	3	52	2		3.36
	1rjw	74	13	9	37	45	17.6	104	338	27	30	47	85	15	4	3.42
	3ox4	121	29	13	71	95	24	196	377	147	18	31	142	27	27	3.38
g	3uog	85	33	16	83	111	38.8	162	332	55	55	52	141	10	11	3.31
ADH-ba	4cpd	60	20	10	37	55	33.3	159	343	76	34	49	132	14	13	3.16
AD	4eez	223	54	24	94	147	24.2	130	338	64	30	36	110	16	4	3.26
	4j6f	79	32	10	56	91	40.5	200	346	69	52	79	159	28	13	3.38
	4z6k	253	34	15	57	88	13.4	113	343	33	34	46	85	13	15	3.32
	5yln	32	5	3	15	17	15.6	77	343	17	34	26	54	17	6	3.28
	1euh	378	118	46	245	357	31.2	270	470	89	63	118	203	37	30	3.40
	1gad	132	27	12	62	81	20.5	149	326	42	57	50	104	27	18	3.30
	1gd1	170	37	15	72	110	21.8	156	328	51	50	55	98	38	20	3.30
a	1obf	241	39	15	62	92	16.2	135	329	44	61	30	99	26	10	3.33
GDH-ba	2d2i	101	16	8	42	51	15.8	118	335	47	38	33	99	13	6	3.27
G	2g82	170	25	13	62	76	14.7	82	326	46	26	10	55	11	16	3.35
	3gnq	130	35	16	70	105	26.9	146	332	53	47	46	98	30	18	3.35
	4dib	38	3	3	13	13	7.9	134	320	49	50	35	100	29	5	3.19
	51d5	85	22	9	44	61	25.9	163	338	89	39	35	119	22	22	3.31
	5utm	235	38	20	87	109	16.2	138	339	66	32	40	95	26	17	3.27

 Table 5. Domain-specific, enzyme-specific, cavity details.

Discovery of rim region between core	and surf	ace of pr	roteins
--------------------------------------	----------	-----------	---------

	6fzh	430	50	15	74	118	11.6	111	331	51	28	32	76	20	15	3.35
	1b8p	197	47	23	102	132	23.9	150	322	59	31	60	103	29	18	3.36
	1bdm	89	35	21	81	99	39.3	156	316	64	49	43	117	22	17	3.39
	1emd	86	39	17	65	99	45.3	195	309	85	66	44	157	18	20	3.23
	1guz	188	15	6	25	35	8	51	304	26	21	4	46	4	1	3.38
	1gv1	130	9	7	30	32	6.9	90	304	40	38	12	72	4	14	3.43
	1ur5	265	62	25	112	170	23.4	172	297	106	49	17	140	25	7	3.39
	1z2i	172	39	21	84	106	22.7	182	348	59	43	80	127	40	15	3.26
	3d5t	76	25	13	55	74	32.9	173	319	75	49	49	125	30	18	3.35
	3fi9	204	34	13	56	86	16.7	117	320	54	30	33	85	13	19	3.22
-ba	3flk	221	29	13	74	102	13.1	191	346	98	67	26	170	18	3	3.31
MDH-ba	3gvh	150	37	22	72	100	24.7	135	316	72	46	17	115	15	5	3.47
IM	3p7m	128	24	4	19	57	18.8	126	302	68	40	18	99	16	11	3.25
	3tl2	367	62	22	102	152	16.9	146	309	92	34	20	114	26	6	3.33
	4e0b	202	42	17	74	107	20.8	147	299	66	51	30	113	23	11	3.26
	4ror	304	36	18	82	111	11.8	98	316	44	37	17	81	8	9	3.36
	4tvo	237	44	22	112	157	18.6	139	323	73	39	27	122	11	6	3.32
	5ujk	282	50	24	91	125	17.7	128	312	69	43	16	105	11	12	3.35
	6aoo	163	51	29	109	139	31.3	132	313	50	47	35	99	17	16	3.33
	6bal	165	60	31	120	163	36.4	150	308	63	43	44	115	21	14	3.33
	6itk	115	29	15	74	92	25.2	134	315	72	21	41	100	24	10	3.34
	6itl	136	39	21	84	106	28.7	105	310	54	38	13	74	20	11	3.33
	1adb	49	16	7	45	57	32.7	167	373	25	44	98	128	26	13	3.29
	1b15	69	23	11	61	80	33.3	136	253	57	47	32	105	21	10	3.34
	1cdo	300	35	15	61	85	11.7	122	370	43	12	67	104	11	7	3.30
	1d1t	76	16	9	61	74	21.1	141	371	47	29	65	110	18	13	3.37
	1ee2	446	69	28	130	191	15.5	149	371	45	32	72	121	16	12	3.33
-eu	1ht0	279	58	23	105	156	20.8	169	372	65	27	77	118	34	17	3.19
θ-H	1mc5	166	33	14	66	97	19.9	114	368	42	20	52	98	10	6	3.30
ADH-	1mg5	357	58	22	104	155	16.2	137	253	61	44	32	109	19	9	3.31
	1u3t	203	30	14	64	89	14.8	118	371	46	26	46	94	16	8	3.35
	3wle	222	66	35	159	202	29.7	192	333	60 52	72	60	131	42	19	3.29
	4jji	212	39	23	107	132	18.4	142	375	53	14	75	99	23	20	3.35
	4rqt	173	37	18	88	118	21.4	134	373	44	16	74	92	29	13	3.24
	4w6z	41	29	13	55	73	70.7	140	345	43	44	53	110	19	11	3.25
	5ilg	146	19	10	51	66	13	82	262	35	25	22	64	9	9	3.33
en	1dss	212	38	19 13	55 53	81	17.9 19.7	148	329	49 50	54 55	44 39	103 122	17 22	27 9	3.44
GDH-eu	1j0x 1k3t	117 261	23 30	13 13	55 64	70 85	19.7	153 164	328 355	59 76	55 61	39 27	122	22 19	9	3.38 3.30
GI		87		15			35.6				77		130	35		
	1vsu	8/	31	10	68	92	33.0	178	322	65	11	36	115	22	28	3.26

Discovery	of rim	region	between	core and	surface	of proteins
Discovery	or min	region	Detween	core and	surrace	or proteins

	1ywg	87	18	10	56	67	20.7	152	332	67	51	34	110	22	20	3.34
	2i5p	126	29	12	50	77	23	174	300	55	67	52	136	18	20	3.31
	2vyn	206	30	15	61	82	14.6	132	325	52	47	33	96	21	15	3.33
	3cps	165	36	19	84	112	21.8	163	330	67	59	37	115	32	16	3.31
	3pym	221	36	18	92	120	16.3	187	330	79	70	38	150	20	17	3.23
	3qv1	55	21	10	47	65	38.2	137	329	54	47	36	106	21	10	3.31
	3sth	188	52	24	100	137	27.7	171	334	92	37	42	110	25	36	3.29
	4k9d	121	25	13	58	71	20.7	137	333	64	38	34	96	24	16	3.34
	5c7i	203	29	14	42	65	14.3	124	326	46	16	62	96	19	9	3.34
	5tso	264	35	12	65	99	13.3	122	328	51	39	31	86	28	7	3.36
	1civ	93	49	24	106	155	52.7	249	369	105	45	99	182	38	29	3.30
	1mld	123	45	20	88	123	36.6	145	311	76	41	28	120	22	3	3.25
	1sev	142	28	16	58	71	19.7	132	311	55	47	30	105	19	8	3.39
	2dfd	188	44	23	105	133	23.4	136	310	77	36	23	109	18	9	3.28
	2fn7	89	30	14	60	81	33.7	147	296	79	44	24	113	24	10	3.33
	2g76	130	14	6	26	37	10.8	86	301	37	18	31	58	18	10	3.26
	2hjr	108	18	11	48	55	16.7	89	311	40	18	31	66	11	12	3.31
Т	2i6t	141	22	12	41	53	15.6	113	279	37	33	43	75	20	18	3.30
I-eı	3i0p	96	42	22	101	130	43.8	150	359	69	18	63	110	32	8	3.39
MDH-eu	4h7p	316	52	25	105	146	16.5	117	309	53	37	25	97	7	11	3.39
Ν	4mdh	190	43	24	104	128	22.6	199	329	97	73	29	150	26	23	3.46
	4plh	122	24	18	63	73	19.7	102	311	47	37	18	88	13	1	
	4plt	235	44	20	91	120	18.7	139	315	78	29	32	106	20	13	3.34
	4uuo	19	4	2	8	14	21.1	130	323	94	19	17	99	20	11	3.24
	5nue	294	49	23	98	131	16.7	129	324	64	37	28	106	13	10	3.36
	5zi2	103	51	25	107	145	49.5	134	336	72	37	25	101	14	19	3.29
	6um4	213	27	13	74	100	12.7	111	321	48	24	39	89	10	12	3.31
	7mdh	59	23	12	66	81	39	173	347	88	38	47	118	30	25	3.38

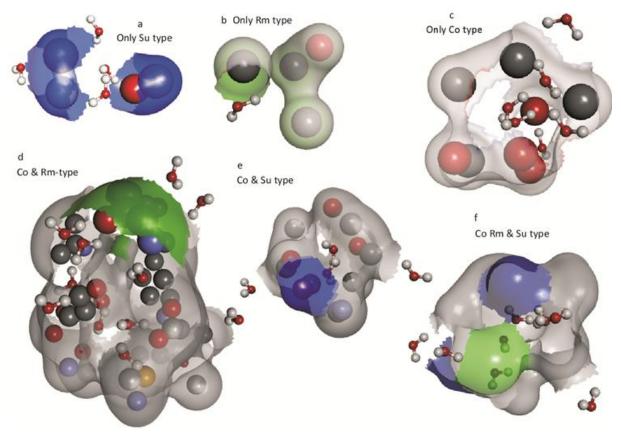


Figure 10. Shell-water and atoms in and out of cavity.

Different types of cavities formed by protein atoms from only the su type (a), only the rm (b), only the co (c), co and rm (d), co and su (e), and co, rm and su (f) regions. Atoms from su, rm, and co regions are shown by blue, green, and grey colors, respectively.

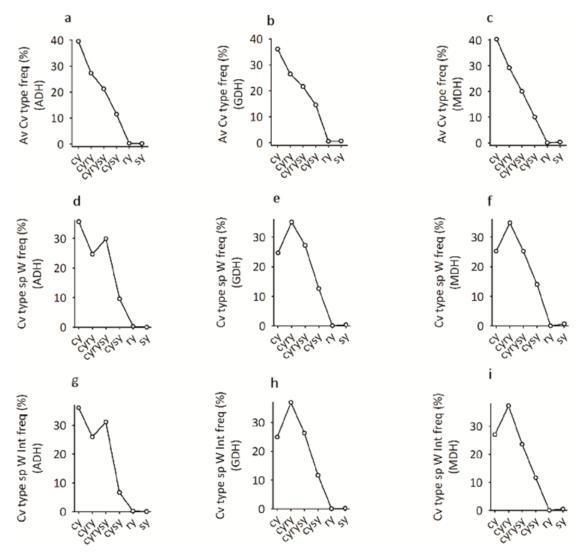


Figure 11. Enzyme-specific percent frequency of cavity

Average cavity types normalized frequency for ADH (a), GDH (b), and MDH (c). Similarly, cavity type specific average (%) heteroatom content for ADH (d), GDH (e) and MDH (f). Again, cavity type specific cavity-water and cavity-atom interaction normalized frequency.

I abit v.		iam.	spu	unic	anu	CHL	y me.	-spc	unic	I COL	uuc	hrof	JUIIS	ity ti		pari	, or c	avit	y •	
adh_ar	Α	V	L	Ι	F	Μ	C	Р	G	S	Τ	Ν	Q	Y	W	Η	R	K	E	D
1h2b	0.7	0.6	1.5	0.8	1.5	1.3	1.3	1.7	1.2	1.9	0.7	1.5	0.8	1.4	5.1	1.7	0.7	0.0	0.5	0.8
1jvb	1.3	1.8	1.7	1.1	2.3	0.0	0.0	0.9	0.1	0.6	1.0	0.8	1.4	2.1	4.5	1.3	0.3	0.2	0.5	0.3
1rhc	1.3	1.1	1.5	2.1	1.3	0.6	1.2	0.4	0.2	0.8	1.1	1.2	1.4	1.3	2.2	0.9	1.0	0.3	1.1	0.3
2eer	1.0	1.1	1.5	0.7	1.1	2.1	0.0	2.0	0.8	0.6	1.4	0.9	1.8	1.5	2.7	1.8	0.3	0.5	0.4	0.7
2h6e	1.1	1.4	1.1	1.6	1.7	0.0	0.0	1.3	0.7	0.7	0.6	0.3	1.7	1.7	0.0	2.3	0.7	0.9	0.8	0.7
4jbg	0.5	1.4	1.7	1.3	1.8	0.0	0.0	0.6	0.8	1.8	1.4	1.4	2.5	1.0	2.0	0.0	0.6	0.4	0.3	1.1
6c75	0.8	1.3	1.7	1.7	1.7	1.4	0.0	0.8	0.7	1.1	1.1	1.1	0.0	1.0	1.0	0.8	0.2	0.9	0.5	0.7
																			_	

Table 6. Domain-specific and enzyme-specific residue propensity to be part of cavity.

Discovery of rim region between core and surface of proteins

av	1.0	1.2	1.5	1.3	1.6	0.8	0.4	1.1	0.6	1.1	1.0	1.0	1.4	1.4	2.5	1.3	0.5	0.5	0.6	0.7
sd	0.3	0.4	0.2	0.5	0.4	0.8	0.6	0.6	0.4	0.6	0.3	0.4	0.8	0.4	1.8	0.8	0.3	0.3	0.3	0.3
adh_ba	Α	V	L	Ι	F	Μ	С	Р	G	S	Т	Ν	Q	Y	W	Η	R	K	E	D
1rjw	0.7	0.9	1.7	1.0	1.4	1.1	0.6	1.0	1.3	0.0	1.9	0.0	0.0	2.1	3.8	0.6	1.4	0.6	1.1	0.4
3ox4	1.1	1.2	1.6	0.2	1.8	1.9	0.6	0.2	0.5	1.0	1.0	1.0	0.0	2.6	0.0	1.3	1.1	0.3	1.4	0.5
3uog	1.0	1.3	1.3	2.0	1.8	0.0	4.4	0.9	0.6	1.2	1.1	2.2	2.6	0.0	1.5	0.5	0.8	0.7	0.0	0.7
4cpd	0.5	0.9	0.8	2.4	3.3	2.4	2.9	1.0	1.0	0.6	0.0	0.4	0.8	2.1	0.0	1.1	1.0	0.6	0.2	0.7
4eez	0.9	1.2	1.5	1.2	1.7	1.2	1.8	1.0	0.9	0.7	1.7	0.7	0.0	0.7	2.4	1.0	1.2	0.6	0.6	0.6
4gkv	0.6	1.7	1.0	0.7	2.4	1.8	1.4	0.7	1.1	0.8	0.7	0.6	1.1	2.4	3.2	0.7	1.6	0.6	0.3	0.3
4j6f	0.7	1.3	1.6	1.4	1.8	0.0	2.4	0.2	0.7	1.6	1.0	0.5	1.4	1.7	0.0	1.6	0.9	0.4	0.2	0.8
4z6k	1.5	1.9	1.1	0.0	0.7	0.6	0.8	1.1	0.7	0.7	0.9	1.0	1.1	2.1	2.9	0.9	0.7	1.0	0.3	0.6
5yln	1.2	0.7	2.5	2.0	2.2	1.5	0.0	0.5	0.2	0.4	1.7	0.8	1.5	0.6	0.0	1.4	1.2	0.5	0.3	0.3
av	0.9	1.2	1.5	1.2	1.9	1.2	1.7	0.7	0.8	0.8	1.1	0.8	0.9	1.6	1.5	1.0	1.1	0.6	0.5	0.5
sd	0.3	0.4	0.5	0.8	0.7	0.8	1.4	0.4	0.3	0.5	0.6	0.6	0.9	0.9	1.6	0.4	0.3	0.2	0.5	0.2
adh_eu	Α	V	L	Ι	F	Μ	C	P	G	S	Τ	Ν	Q	Y	W	Η	R	K	E	D
1adb	0.7	0.7	1.4	1.4	2.7	1.1	0.7	0.5	0.8	1.5	1.0	1.2	1.2	0.0	2.4	0.7	0.8	0.7	0.7	0.9
1b15	0.9	1.6	1.2	2.3	0.8	4.1	2.1	0.4	0.8	0.7	0.5	1.6	0.0	2.8	0.8	0.0	0.0	0.5	0.8	0.3
1cdo	0.6	1.0	1.9	0.8	3.3	2.1	1.6	0.3	0.9	1.5	0.0	1.3	1.2	0.0	0.0	1.1	0.0	0.6	0.6	0.6
1d1t	0.5	1.0	2.2	1.0	1.2	0.6	1.1	0.5	0.7	1.1	0.7	1.1	3.1	1.0	5.2	1.5	0.9	0.8	1.0	0.6
1ee2	0.3	0.8	1.8	1.5	2.2	1.2	1.1	0.8	0.7	1.6	0.5	1.3	1.2	0.0	2.6	1.5	1.9	0.5	0.3	0.3
1ht0	0.3	0.7	1.8	1.5	2.2	1.4	0.6	1.0	0.6	1.7	1.1	1.2	0.7	1.2	2.4	0.8	1.0	0.7	0.7	0.3
1mc5	0.6	1.0	1.5	0.9	0.9	3.7	0.4	1.6	0.8	1.6	1.1	0.7	2.2	1.8	1.6	1.8	0.7	0.4	0.5	0.5
1mg5	0.6	2.0	2.0	1.3	0.8	0.0	1.8	0.0	0.6	0.5	0.8	1.8	1.0	1.2	0.7	0.0	0.7	0.6	0.4	0.0
1u3t	0.5	0.9	1.8	1.6	1.7	1.6	1.0	1.0	0.6	2.1	0.7	1.4	0.7	2.6	2.6	0.7	0.7	0.5	0.3	0.0
3wle	1.0	0.7	1.3	1.4	1.7	2.3	0.8	0.9	1.0	0.4	1.4	0.8	1.9	0.8	3.4	2.1	0.9	0.1	0.9	1.2
4jji	0.9	0.8	1.9	0.7	2.0	2.1	1.4	0.3	0.4	0.5	0.8	0.4	0.5	1.6	3.1	1.7	1.4	0.9	1.6	0.9
4rqt	1.4	0.5	1.9	1.3	1.8	0.6	2.1	0.6	0.5	0.5	1.2	1.3	0.9	0.9	0.0	1.6	2.0	0.6	0.5	0.3
4w6z	1.0	0.7	1.6	2.3	1.2	1.6	1.2	0.0	0.5	1.4	1.0	1.3	1.1	1.4	1.9	1.0	1.2	0.4	0.5	0.9
5ilg	1.0	2.2	0.6	1.6	2.1	1.5	0.0	0.0	0.6	0.5		1.0	0.0	2.0	0.0	0.0	0.6		0.0	0.4
av	0.7	1.0	1.6	1.4	1.8	1.7	1.1	0.6	0.7	1.1	0.9	1.2	1.1	1.2	1.9	1.0	0.9	0.6	0.6	0.5
sd	0.3	0.5	0.4	0.5	0.7	1.1	0.6	0.5	0.2	0.6	0.4	0.4	0.8	0.9	1.5	0.7	0.6	0.2	0.4	0.4
gdh_ar	A	V	L	Ι	F	M	C	P	G	S	Τ	N	Q	Y	W	Η	R	K	E	D
1b7g	0.9	1.5	1.4	2.3	0.0	0.5	0.0	0.4	0.0	1.0	0.8	1.0	0.0	1.4	0.0	0.9	1.5	0.4	0.8	0.7
1cf2	0.9	0.9	1.2	1.5	2.2	0.6	0.0	1.0	0.4	1.1	0.8	0.5	1.1	1.4	7.6	1.1	2.7	0.6	0.6	0.8
luxt	1.1	1.0	1.3	1.5	1.1	0.9	3.5	1.4	0.9	1.0	0.5	2.3	1.4	1.8	0.9	3.5	0.6	0.5	0.4	0.5
2czc	0.8	1.4	2.0	1.6	1.0	0.0	0.0	0.0	0.3	0.6	1.3	1.2	0.9	0.0	4.4	2.2	1.9	0.5	0.5	1.0
2ууу	1.0	1.0	2.1	2.2	1.0	0.9	0.0	0.7	0.4	0.0	0.7	1.1	0.6	2.7	0.0	2.0	1.2	0.5	0.5	0.4
av	0.9	1.2	1.6	1.8	1.1	0.6	0.7	0.7	0.4	0.7	0.8	1.2	0.8	1.5	2.6	1.9	1.6	0.5	0.6	0.7
sd	0.1	0.3	0.4	0.4	0.8	0.4	1.6	0.5	0.3	0.5	0.3	0.7	0.5	1.0	3.3	1.0	0.8	0.1	0.2	0.2
gdh_ba	Α	V	L	Ι	F	Μ	C	P	G	S	Τ	Ν	Q	Y	W	Η	R	Κ	E	D

Discovery of rim region between core and surface of proteins

1 arch	0.4	1.2	1.0	1.2	17	1.0	24	0.0	1.0	1.2	0.9	1.2	0.9	0.0	0.0	0.0	1.2	07	0.0	07
1euh	0.4	1.2	1.6	1.3	1.7	1.9	3.4	0.9	1.0	1.3	0.8	1.2	0.8	0.9	0.0	0.0	1.3	0.7	0.6	0.7
1 gad	0.7	0.9	1.9	1.9	1.1	1.2	1.4	0.9	0.6	0.0	0.6	1.4	3.3	1.0	2.8	0.0	1.7	0.8	0.6	0.8
1gd1	0.6	1.2	1.5	1.4	0.7	1.5	1.8	1.1	0.3	0.6	0.4	1.4	1.2	2.2	3.6	0.8	1.7	0.5	0.9	0.7
1 obf	0.4	0.9	1.5	1.9	1.8	0.7	2.2	0.7	0.3	1.3	0.6	0.8	1.5	2.4	1.5	1.0	2.2	0.2	0.4	1.3
2d2i	0.7	1.3	1.7	1.3	0.6	0.0	2.6	0.5	0.5	0.7	0.0	2.0	0.6	3.9	1.0	0.9	1.4	0.6	0.3	0.9
2g82	0.5	1.3	2.0	1.4	1.0	1.0	0.0	0.6	0.3	1.0	0.0	0.6	1.7	2.0	2.2	0.7	1.7	1.2	0.7	0.9
3gnq	0.5	1.0	1.4	0.8	2.0	2.0	2.7	0.7	0.7	1.1	1.2	1.3	1.3	0.8	1.3	0.8	1.4	0.9	0.5	0.7
4dib	1.1	1.1	1.8	1.9	1.8	0.7	4.4	0.0	0.6	1.3	0.2	0.5	0.0	2.6	1.5	1.5	1.6	0.2	0.2	0.7
51d5	1.0	1.2	1.7	1.6	2.3	1.3	1.4	0.3	0.7	0.8	0.4	0.6	0.8	1.5	0.0	0.0	1.7	1.0	0.6	0.6
5utm	1.1	1.0	2.1	0.7	1.2	1.3	2.3	0.8	1.5	1.2	0.8	0.5	0.4	2.9	2.3	0.0	1.1	0.5	0.2	0.4
6fzh	0.7	0.8	1.8	1.2	1.2	0.7	2.4	1.0	1.5	1.3	1.0	0.5	1.2	3.5	2.4	0.7	0.8	0.2	0.5	0.4
av	0.7	1.1	1.7	1.4	1.4	1.1	2.2	0.7	0.7	1.0	0.5	1.0	1.2	2.2	1.7	0.6	1.5	0.6	0.5	0.7
sd	0.3	0.2	0.2	0.4	0.6	0.6	1.1	0.3	0.4	0.4	0.4	0.5	0.9	1.0	1.1	0.5	0.4	0.3	0.2	0.3
gdh_eu	Α	V	L	Ι	F	Μ	C	Р	G	S	Τ	Ν	Q	Y	W	Η	R	K	Ε	D
1dss	0.9	1.4	1.7	2.0	0.9	0.8	2.1	0.3	0.7	0.8	0.9	1.0	2.4	0.5	0.0	0.0	2.3	0.3	0.2	1.5
1j0x	1.3	1.2	1.9	0.9	1.1	2.5	0.0	0.7	0.2	1.3	1.3	1.4	0.6	1.3	1.3	0.3	1.9	0.3	0.3	0.7
1k3t	0.7	1.4	2.1	2.0	2.6	1.2	2.0	0.3	0.4	0.6	0.4	1.4	1.0	1.7	2.0	0.4	1.1	0.2	0.3	0.6
1 vsu	1.0	1.4	1.9	1.1	0.3	1.1	1.5	0.0	0.7	0.8	1.2	0.8	0.0	0.9	0.0	2.3	2.3	0.9	0.3	0.9
1ywg	1.0	1.0	1.4	1.8	1.4	0.0	1.4	0.3	0.7	0.9	0.7	0.9	1.4	1.9	0.0	1.3	1.8	0.6	0.5	0.7
2i5p	1.0	1.4	1.1	1.4	1.9	1.2	1.5	0.3	0.9	0.5	0.6	0.8	2.3	0.9	1.5	1.5	1.0	0.8	0.6	0.6
2vyn	1.2	1.2	1.6	1.8	2.6	1.2	0.0	0.0	0.7	0.0	0.6	0.9	2.4	1.0	1.4	0.0	1.7	0.6	0.6	0.7
3cps	1.3	0.8	1.8	1.8	0.4	1.2	1.6	0.2	0.9	0.8	0.8	0.5	0.9	2.0	0.0	0.0	2.0	0.7	0.3	0.5
3pym	1.0	1.6	2.3	1.6	1.0	1.5	3.4	0.0	0.7	0.5	0.4	1.0	1.4	1.2	1.1	0.4	1.5	0.7	0.2	0.7
3qv1	0.7	1.4	1.5	1.4	2.0	0.0	3.2	0.6	0.5	0.4	0.8	0.8	2.0	2.0	2.0	1.6	1.3	0.5	0.7	0.4
3sth	0.7	0.8	2.1	1.3	1.5	1.1	2.5	0.5	0.9	0.5	1.2	1.2	0.7	1.3	0.9	0.8	2.5	0.4	0.3	0.7
4k9d	0.7	1.4	1.8	1.5	1.1	1.9	1.9	0.8	0.6	0.6	0.7	1.1	1.0	1.5	0.0	1.3	1.9	0.5	0.4	0.8
41sm	0.6	1.3	1.9	1.8	0.6	2.3	1.7	0.0	0.3	0.7	0.6	0.9	1.4	1.0	1.7	0.0	1.3	0.8	0.9	1.1
5c7i	1.2	0.8	1.5	1.8	1.5	1.6	1.0	0.5	0.0	0.2	0.0	1.5	1.9	2.6	1.6	1.4	2.1	0.3	0.3	1.2
5tso	0.7	0.8	2.6	1.5	1.1	2.3	2.6	0.0	0.7	0.3	0.7	0.7	1.7	1.7	1.7	0.9	3.1	0.4	0.0	1.0
av	0.9	1.2	1.8	1.6	1.3	1.3	1.8	0.3	0.6	0.6	0.7	1.0	1.4	1.4	1.0	0.8	1.9	0.5	0.4	0.8
sd	0.2	0.3	0.4	0.3	0.7	0.7	1.0	0.3	0.3	0.3	0.3	0.3	0.7	0.6	0.8	0.7	0.6	0.2	0.2	0.3
mdh_ar	Α	V	L	Ι	F	Μ	C	Р	G	S	Т	Ν	Q	Y	W	Η	R	K	E	D
106z	0.6	0.7	2.5	2.6	1.4	2.7	0.0	1.1	0.9	0.6	0.4	0.6	0.5	1.6	0.0	0.8	2.1	0.7	0.2	0.7
1v9n	0.5	1.9	1.1	0.8	0.4	0.0	0.0	1.3	0.8	1.0	1.4	1.8	0.0	1.3	1.5	0.6	1.1	0.5	0.9	1.1
2d4a	0.8	1.5	2.2	1.7	1.0	1.5	0.0	1.2	0.2	0.8	0.7	0.6	0.0	1.4	0.0	1.7	1.1	0.0	0.4	0.7
2x0i	1.3	1.8	1.5	1.5	1.9	1.8	4.5	0.6	0.5	0.8	1.0	0.4	0.0	0.0	3.0	0.0	0.6	0.6	0.4	0.3
4bgu	0.7	1.0	1.8	2.5	1.9	1.7	4.2	1.2	1.3	1.2	0.2	0.8	1.4	0.0	2.1	1.4	1.3	0.0	0.2	0.3
4bgv	0.7	1.4	0.0	3.0	0.8	3.1	4.7	0.0	1.8	0.4	0.0	0.0	0.0	1.4	0.0	0.0	0.7	0.4	0.0	0.9
6ihd	1.1	1.8	1.6	2.0	1.8	0.8	0.0	0.3	0.7	0.4	0.0	0.9	1.3	2.5	1.3	0.8	0.5	0.8	0.4	0.0
av	0.8	1.4	1.5	2.0	1.3	1.7	1.9	0.8	0.9	0.7	0.5	0.7	0.5	1.2	1.1	0.8	1.1	0.4	0.4	0.6
sd	0.3	0.5	0.8	0.8	0.6	1.1	2.4	0.5	0.5	0.3	0.5	0.6	0.6	0.9	1.2	0.6	0.5	0.3	0.3	0.4
						D													62	

mdh-ba	Α	V	L	Ι	F	Μ	C	Р	G	S	Т	Ν	Q	Y	W	Η	R	K	E	D
1b8p	0.7	1.3	1.6	1.4	1.2	1.0	0.0	0.3	0.8	0.8	1.2	0.7	0.6	2.9	3.0	2.0	0.9	0.9	0.6	0.4
1bdm	0.7	1.1	1.0	1.7	0.8	1.5	0.0	0.0	0.4	1.7	1.4	2.1	0.9	0.5	0.9	3.8	1.2	0.7	0.8	1.1
1emd	0.7	1.1	2.2	1.6	1.8	1.5	2.0	0.7	0.5	0.7	0.8	0.3	0.6	2.2	0.0	1.5	0.3	0.6	0.9	0.8
1 guz	1.2	1.2	1.5	2.6	0.0	0.9	3.5	0.8	0.4	0.7	2.1	0.0	0.0	0.0	0.0	2.6	0.8	0.0	1.2	0.0
1gv1	0.4	1.5	1.0	3.0	0.9	0.9	1.8	0.4	0.8	0.4	2.4	1.0	0.0	0.0	0.0	1.4	0.4	0.3	0.7	0.3
1ur5	1.1	1.3	0.8	1.4	0.6	1.5	2.2	1.3	0.8	1.3	1.6	0.0	0.0	2.5	0.0	2.2	0.0	0.3	0.9	0.6
1z2i	0.9	1.0	1.2	0.5	1.4	1.9	2.5	1.2	0.7	0.6	1.0	1.1	0.7	2.3	3.7	2.1	0.9	0.5	0.2	0.5
3d5t	0.3	1.5	1.3	1.4	1.1	1.9	1.6	0.2	0.3	0.8	1.1	2.0	1.4	1.6	3.3	2.4	1.6	0.5	0.4	0.9
3fi9	0.9	1.5	1.5	2.2	2.2	0.9	0.0	0.5	0.2	0.8	1.2	0.4	0.5	1.7	1.7	0.7	2.1	0.0	0.7	0.4
3flk	1.0	1.5	1.4	1.4	1.7	0.0	0.9	1.2	0.9	0.7	0.9	0.9	0.0	1.5	1.1	0.4	1.1	0.3	0.5	0.7
3gvh	0.7	1.5	1.6	1.8	1.6	1.0	0.0	0.6	1.1	0.5	1.3	0.0	1.0	1.1	2.2	1.5	0.0	0.4	0.6	0.8
3nep	0.9	1.3	1.2	3.5	4.3	2.3	2.1	1.4	0.0	0.8	1.3	0.0	0.0	0.0	0.0	2.1	0.6	0.0	0.4	0.3
3p7m	1.2	1.6	1.8	1.7	1.1	0.0	1.1	0.4	1.0	0.0	1.7	0.0	0.0	0.9	0.0	2.9	1.2	0.5	0.3	0.4
3tl2	0.9	1.5	0.6	1.3	1.5	2.3	0.0	0.9	1.0	1.7	1.3	0.0	1.3	0.4	0.0	2.0	1.1	0.4	0.4	0.8
4e0b	0.9	0.9	1.7	1.8	2.1	0.0	2.5	0.8	0.8	0.5	0.8	0.8	0.5	1.8	0.0	0.0	0.0	1.2	0.5	0.8
4ror	0.7	0.9	1.1	2.2	1.0	1.3	1.8	1.8	1.2	0.3	0.8	0.0	1.1	2.0	2.7	0.0	0.5	0.8	0.3	1.1
4tvo	0.3	0.9	1.7	1.4	1.8	1.7	0.0	0.6	1.2	1.0	1.4	1.1	1.2	2.8	1.7	1.4	1.7	0.4	0.2	0.4
5ujk	1.2	1.0	1.2	2.2	1.3	0.6	1.6	0.8	0.9	1.2	1.2	0.0	0.9	1.7	2.3	0.0	0.4	0.5	0.5	0.8
6aoo	1.1	1.9	1.4	0.8	1.5	2.3	3.1	0.3	0.9	0.5	0.5	0.0	1.4	1.8	0.0	0.0	0.8	0.5	0.5	1.5
6bal	0.8	1.2	1.0	1.8	1.6	0.9	2.4	0.7	0.9	0.7	0.6	0.3	1.2	2.9	0.0	1.8	1.5	0.6	0.6	1.2
6itk	0.8	1.3	1.3	2.1	1.5	1.0	0.0	1.0	0.6	0.2	1.6	0.9	0.5	3.1	2.1	1.0	1.0	0.9	0.4	0.4
6itl	0.6	1.6	1.4	1.1	2.4	0.0	1.8	1.3	0.2	0.7	0.9	0.8	1.1	2.1	0.0	1.8	0.5	0.8	1.0	1.3
av	0.8	1.3	1.3	1.8	1.5	1.2	1.4	0.8	0.7	0.8	1.2	0.6	0.7	1.6	1.1	1.5	0.8	0.5	0.6	0.7
sd	0.3	0.3	0.4	0.7	0.8	0.7	1.1	0.4	0.3	0.4	0.5	0.6	0.5	1.0	1.3	1.0	0.6	0.3	0.3	0.4
mdh-eu	Α	V	L	Ι	F	Μ	C	P	G	S	Τ	Ν	Q	Y	W	Η	R	K	E	D
1civ	0.2	0.8	1.6	0.8	1.1	1.3	0.0	1.0	0.7	0.8	1.2	0.9	1.5	1.3	1.1	1.4	1.8	1.3	1.1	0.9
1 mld	0.7	1.7	0.9	2.6	1.9	0.7	1.1	0.8	0.6	0.5	1.2	1.1	0.5	1.7	0.0	0.8	1.1	0.4	0.6	0.3
1 sev	1.1	1.3	1.5	1.0	1.3	0.6	2.8	0.8	0.7	0.9	0.6	0.9	1.2	0.8	0.0	1.6	1.0	0.6	0.3	0.7
2dfd	0.6	1.2	1.1	2.5	2.4	1.5	0.9	1.0	0.6	0.9	0.6	0.9	0.9	1.5	0.0	0.7	1.6	0.3	0.7	0.6
2fn7	0.6	1.9	0.8	1.7	1.1	1.6	1.9	0.9	0.6	1.1	0.6	0.3	0.0	1.1	3.7	2.1	1.6	0.2	0.0	1.0
2g76	0.7	1.9	1.7	1.0	3.4	2.2	1.6	0.0	1.1	0.4	0.7	0.5	1.2	0.0	0.0	2.0	0.7	0.0	0.6	0.4
2hjr	0.5	1.6	1.3	1.5	1.8	0.8	1.0	1.1	1.0	0.2	1.5	0.7	0.0	1.8	0.0	2.0	2.0	0.0	0.9	1.1
2i6t	0.3	1.3	2.1	1.3	1.8	1.8	1.5	0.0	1.1	0.3	1.4	0.4	0.9	1.5	1.1	0.0	0.0	0.9	0.4	1.1
3i0p	1.3	0.9	1.4	1.9	1.2	1.1	0.0	0.6	0.8	1.1	1.2	1.3	0.0	1.3	0.0	1.6	0.8	0.4	0.8	0.4
4h7p	0.4	0.9	1.7	2.0	0.0	0.8	2.0	1.2	0.6	0.9	1.0	2.7	0.0	2.5	3.3	2.1	1.4	0.0	0.3	0.7
4mdh	0.2	1.3	1.5	1.7	1.8	0.4	0.7	0.8	0.5	0.6	1.1	1.1	1.2	1.4	2.5	2.5	0.7	1.3	0.8	0.4
4plh	1.0	1.6	2.1	1.6	1.9	1.1	2.5	0.8	0.7	0.3	1.1	1.0	0.0	1.5	5.0	1.0	0.0	0.0	0.2	0.6
4plt	1.2	0.9	1.5	1.7	1.4	1.2	0.9	0.3	0.8	0.8	1.1	0.5	0.0	1.9	1.9	0.7	1.9	0.6	0.6	0.9
4uuo	1.0	0.6	2.2	1.6	0.7	1.1	1.9	0.6	0.2	0.4	1.3	1.3	0.6	1.8	2.2	0.0	2.0	0.9	0.5	0.6

Discovery of rim region between core and surface of proteins

5nue	0.6	1.3	1.5	1.7	1.4	1.0	1.4	1.0	0.6	0.3	0.7	1.4	1.4	1.2	3.2	2.2	1.3	0.4	0.0	1.0
5zi2	0.5	2.1	1.1	1.5	0.9	0.8	0.0	1.1	0.4	1.3	0.7	1.4	0.0	0.8	0.0	0.9	1.0	0.6	1.1	0.4
6um4	0.7	1.5	1.3	1.2	1.2	2.8	1.4	1.4	0.4	1.0	0.9	1.3	0.5	0.0	2.8	2.8	0.8	0.3	0.3	0.7
7mdh	0.8	0.8	1.6	2.3	1.9	2.3	0.0	0.5	0.7	0.8	0.8	0.9	1.7	1.1	1.6	1.9	1.0	0.6	0.9	0.2
av	0.7	1.3	1.5	1.6	1.5	1.3	1.2	0.8	0.7	0.7	1.0	1.0	0.6	1.3	1.6	1.5	1.2	0.5	0.6	0.7
sd	0.3	0.4	0.4	0.5	0.7	0.6	0.9	0.4	0.2	0.3	0.3	0.5	0.6	0.6	1.6	0.8	0.6	0.4	0.3	0.3

Details of residue propensity to be part of cavity for representative proteins of three enzyme classes of the domains of life. Adh _ar, archaeal ADH; adh_ba, bacterial ADH; adh_eu, eukaryote ADH; gdh_ar, archaeal GDH; gdh_ba, bacterial GDH; gdh_eu, eukaryotic GDH; mdh_ar, archaeal MDH; mdh_ba, bacterial MDH, and MDH-eu, eukaryotic MDH.

Table 7: Protein-	specific frequ	iency of type	es of cavity			
Proteins	cy	cyry	cyrysy	cysy	ry	sy
1h2b	43.8	12.5	18.8	18.8	6.3	0.0
1jvb	46.7	13.3	33.3	6.7	0.0	0.0
1rhc	18.2	45.5	27.3	9.1	0.0	0.0
2eer	38.5	30.8	23.1	7.7	0.0	0.0
2h6e	43.8	25.0	31.3	0.0	0.0	0.0
4jbg	40.0	33.3	13.3	13.3	0.0	0.0
6c75	50.0	18.8	9.4	18.8	0.0	3.1
AD_ar_av	40.1	25.6	22.3	10.6	0.9	0.4
1rjw	53.3	20.0	26.7	0.0	0.0	0.0
3ox4	21.7	39.1	17.4	21.7	0.0	0.0
3uog	62.5	12.5	18.8	6.3	0.0	0.0
4cpd	52.2	17.4	13.0	17.4	0.0	0.0
4eez	46.7	40.0	0.0	13.3	0.0	0.0
4gkv	40.0	30.0	20.0	10.0	0.0	0.0
4j6f	38.9	33.3	22.2	5.6	0.0	0.0
4z6k	15.4	23.1	23.1	38.5	0.0	0.0
5yln	18.2	36.4	45.5	0.0	0.0	0.0
AD_ba_av	38.8	28.0	20.7	12.5	0.0	0.0
1adb	41.2	29.4	23.5	5.9	0.0	0.0
1b15	35.3	41.2	0.0	23.5	0.0	0.0
1cdo	50.0	22.2	11.1	16.7	0.0	0.0
1d1t	37.5	25.0	31.3	6.3	0.0	0.0
1ee2	41.2	29.4	17.6	11.8	0.0	0.0
1ht0	38.1	28.6	28.6	4.8	0.0	0.0
1mc5	57.1	21.4	14.3	7.1	0.0	0.0
1mg5	29.4	29.4	23.5	17.6	0.0	0.0
1u3t	35.7	28.6	28.6	7.1	0.0	0.0
3wle	30.8	30.8	30.8	7.7	0.0	0.0

Discovery of rim region between core and surface of proteins

4jji	26.3	21.1	26.3	26.3	0.0	0.0
	43.8	37.5	18.8	0.0	0.0	0.0
4rqt						
4w6z	40.0	35.0	10.0	15.0	0.0	0.0
5ilg	50.0	16.7	25.0	8.3	0.0	0.0
AD_eu_Av	39.7	28.3	20.7	11.3	0.0	0.0
1b7g	56.3	0.0	31.3	12.5	0.0	0.0
1cf2	44.4	11.1	11.1	33.3	0.0	0.0
luxt	41.0	35.9	15.4	7.7	0.0	0.0
2czc	33.3	16.7	33.3	16.7	0.0	0.0
2ууу	42.9	17.9	21.4	14.3	3.6	0.0
GD_ar_av	43.6	16.3	22.5	16.9	0.7	0.0
1euh	35.7	28.6	28.6	7.1	0.0	0.0
1gad	36.8	31.6	21.1	10.5	0.0	0.0
1gd1	15.8	31.6	26.3	21.1	5.3	0.0
1obf	29.4	29.4	23.5	11.8	5.9	0.0
2d2i	42.9	35.7	7.1	14.3	0.0	0.0
2g82	9.1	45.5	27.3	18.2	0.0	0.0
3gnq	26.3	42.1	15.8	15.8	0.0	0.0
4dib	35.3	47.1	11.8	5.9	0.0	0.0
51d5	21.1	31.6	15.8	26.3	0.0	5.3
5utm	27.8	38.9	27.8	5.6	0.0	0.0
6fzh	13.3	40.0	33.3	13.3	0.0	0.0
GD_ba_Av	26.7	36.5	21.7	13.6	1.0	0.5
1dss	26.1	34.8	13.0	21.7	0.0	4.3
1j0x	52.4	19.0	19.0	9.5	0.0	0.0
1k3t	50.0	22.7	13.6	13.6	0.0	0.0
1vsu	26.9	23.1	30.8	19.2	0.0	0.0
1ywg	27.8	22.2	33.3	11.1	0.0	5.6
2i5p	50.0	9.1	27.3	13.6	0.0	0.0
2vyn	40.0	20.0	25.0	15.0	0.0	0.0
3cps	39.1	21.7	26.1	13.0	0.0	0.0
3pym	45.8	29.2	12.5	12.5	0.0	0.0
3qv1	38.9	33.3	16.7	11.1	0.0	0.0
3sth	25.0	20.8	25.0	20.8	0.0	8.3
4k9d	38.9	20.0	27.8	11.1	0.0	0.0
4lsm	35.7	35.7	21.4	7.1	0.0	0.0
5c7i	38.9	50.0	5.6	0.0	0.0	5.6
5tso	33.3	33.3	13.3	20.0	0.0	0.0
GD_eu_Av	37.9	26.5	20.7	13.3	0.0	1.6
			7.7			
106z	46.2	46.2	1.1	0.0	0.0	0.0

Γ						
1v9n	20.0	15.0	30.0	35.0	0.0	0.0
2d4a	41.2	29.4	29.4	0.0	0.0	0.0
2x0i	50.0	25.0	25.0	0.0	0.0	0.0
4bgu	50.0	27.8	11.1	11.1	0.0	0.0
4bgv	87.5	12.5	0.0	0.0	0.0	0.0
6ihd	26.1	39.1	34.8	0.0	0.0	0.0
MD_ar_av	45.8	27.9	19.7	6.6	0.0	0.0
1b8p	18.2	31.8	40.9	9.1	0.0	0.0
1bdm	28.6	38.1	19.0	14.3	0.0	0.0
1emd	50.0	15.4	19.2	11.5	0.0	3.8
1guz	50.0	33.3	0.0	16.7	0.0	0.0
1gv1	53.3	13.3	13.3	20.0	0.0	0.0
1ur5	52.9	23.5	17.6	5.9	0.0	0.0
1z2i	29.2	37.5	25.0	8.3	0.0	0.0
3d5t	38.1	14.3	33.3	14.3	0.0	0.0
3fi9	31.3	18.8	31.3	18.8	0.0	0.0
3flk	44.4	44.4	5.6	5.6	0.0	0.0
3gvh	52.6	31.6	10.5	5.3	0.0	0.0
3nep	57.1	14.3	14.3	14.3	0.0	0.0
3p7m	25.0	33.3	41.7	0.0	0.0	0.0
3tl2	43.8	43.8	6.3	0.0	0.0	6.3
4e0b	42.1	26.3	21.1	10.5	0.0	0.0
4ror	46.2	15.4	30.8	7.7	0.0	0.0
4tvo	40.0	40.0	13.3	6.7	0.0	0.0
5ujk	55.0	10.0	30.0	5.0	0.0	0.0
6aoo	42.1	15.8	26.3	15.8	0.0	0.0
бbal	45.0	25.0	25.0	5.0	0.0	0.0
6itk	31.6	42.1	26.3	0.0	0.0	0.0
6itl	21.4	28.6	35.7	14.3	0.0	0.0
MD ba Av	40.8	27.1	22.1	9.5	0.0	0.5
1civ	36.7	20.0	23.3	20.0	0.0	0.0
1mld	55.6	33.3	11.1	0.0	0.0	0.0
1sev	44.4	27.8	16.7	11.1	0.0	0.0
2dfd	44.4	33.3	16.7	5.6	0.0	0.0
2614 2fn7	38.1	28.6	28.6	4.8	0.0	0.0
2g76	22.2	44.4	33.3	0.0	0.0	0.0
2570 2hjr	27.3	36.4	0.0	27.3	0.0	9.1
2i6t	23.5	17.6	41.2	17.6	0.0	0.0
3i0p	30.0	45.0	20.0	5.0	0.0	0.0
4h7p	33.3	33.3	0.0	33.3	0.0	0.0
4mdh	28.0	36.0	16.0	20.0	0.0	0.0
Life as Basic Science					0.0	67

Discovery of rim region between core and surface of proteins

4plh	50.0	42.9	7.1	0.0	0.0	0.0
4plt	45.0	30.0	15.0	10.0	0.0	0.0
4uuo	15.8	47.4	15.8	21.1	0.0	0.0
5nue	42.1	26.3	26.3	5.3	0.0	0.0
5zi2	35.3	11.8	17.6	35.3	0.0	0.0
6um4	27.3	36.4	18.2	18.2	0.0	0.0
7mdh	19.0	38.1	23.8	19.0	0.0	0.0
MD_eu_AV	34.3	32.7	18.4	14.1	0.0	0.5

Domains of life and enzyme class specific representative protein's normalized frequency of different types of cavity and their average (grey row) value.

	Table 8: Details on unique shen-water in uniferent types of cavities.								
	cyUw	cyryUw	cyrysyUw	cysyUw	ryUw	syUw			
1h2b	41.2	9.8	25.5	17.6	5.9	0.0			
1jvb	29.6	22.2	40.7	7.4	0.0	0.0			
1rhc	5.4	43.2	43.2	8.1	0.0	0.0			
2eer	31.6	42.1	15.8	10.5	0.0	0.0			
2h6e	20.0	26.7	53.3	0.0	0.0	0.0			
4jbg	48.1	29.6	11.1	11.1	0.0	0.0			
6c75	40.0	36.0	8.0	16.0	0.0	0.0			
AD_ar_av	30.8	30.0	28.2	10.1	0.8	0.0			
1rjw	46.2	30.8	23.1	0.0	0.0	0.0			
3ox4	31.0	34.5	20.7	13.8	0.0	0.0			
3uog	42.4	21.2	33.3	3.0	0.0	0.0			
4cpd	65.0	20.0	5.0	10.0	0.0	0.0			
4eez	27.8	59.3	0.0	13.0	0.0	0.0			
4gkv	29.0	35.5	29.0	6.5	0.0	0.0			
4j6f	53.1	31.3	15.6	0.0	0.0	0.0			
4z6k	2.9	32.4	32.4	32.4	0.0	0.0			
5yln	0.0	60.0	40.0	0.0	0.0	0.0			
AD_ba_av	33.1	36.1	22.1	8.7	0.0	0.0			
1adb	50.0	31.3	18.8	0.0	0.0	0.0			
1b15	0.0	78.3	0.0	21.7	0.0	0.0			
1cdo	22.9	11.4	31.4	34.3	0.0	0.0			
1d1t	62.5	18.8	0.0	18.8	0.0	0.0			
1ee2	34.8	34.8	21.7	8.7	0.0	0.0			
1ht0	31.0	27.6	36.2	5.2	0.0	0.0			
1mc5	45.5	27.3	27.3	0.0	0.0	0.0			
1mg5	8.6	37.9	29.3	24.1	0.0	0.0			
1u3t	30.0	30.0	30.0	10.0	0.0	0.0			
3wle	24.2	24.2	43.9	7.6	0.0	0.0			

4jji	30.8	15.4	28.2	25.6	0.0	0.0
	21.6	35.1	43.2	0.0	0.0	0.0
4rqt			6.9	17.2		0.0
4w6z	51.7	24.1			0.0	
5ilg	42.1	10.5	26.3	21.1	0.0	0.0
AD_eu_Av	32.6	29.0	24.5	13.9	0.0	0.0
1b7g	28.0	0.0	60.0	12.0	0.0	0.0
1cf2	24.0	16.0	32.0	28.0	0.0	0.0
1uxt	22.2	48.9	16.7	12.2	0.0	0.0
2czc	10.5	15.8	68.4	5.3	0.0	0.0
2ууу	27.6	20.7	41.4	10.3	0.0	0.0
GD_ar_av	22.5	20.3	43.7	13.6	0.0	0.0
1euh	12.7	36.4	44.1	6.8	0.0	0.0
1gad	3.7	48.1	33.3	14.8	0.0	0.0
1gd1	8.1	48.6	24.3	16.2	2.7	0.0
1obf	2.6	48.7	28.2	20.5	0.0	0.0
2d2i	43.8	37.5	12.5	6.3	0.0	0.0
2g82	0.0	28.0	44.0	28.0	0.0	0.0
3gnq	2.9	60.0	22.9	14.3	0.0	0.0
4dib	0.0	33.3	33.3	33.3	0.0	0.0
51d5	4.5	50.0	18.2	18.2	0.0	9.1
5utm	15.8	39.5	36.8	7.9	0.0	0.0
6fzh	16.0	26.0	48.0	10.0	0.0	0.0
GD_ba_Av	10.0	41.5	31.4	16.0	0.2	0.8
1dss	15.8	34.2	10.5	31.6	0.0	7.9
1j0x	21.7	47.8	26.1	4.3	0.0	0.0
1k3t	13.3	40.0	20.0	26.7	0.0	0.0
1vsu	6.5	29.0	54.8	9.7	0.0	0.0
1ywg	11.1	38.9	38.9	11.1	0.0	0.0
2i5p	20.7	24.1	34.5	20.7	0.0	0.0
2vyn	23.3	33.3	33.3	10.0	0.0	0.0
3cps	5.6	36.1	47.2	11.1	0.0	0.0
3pym	13.9	38.9	25.0	22.2	0.0	0.0
3qv1	19.0	52.4	28.6	0.0	0.0	0.0
3sth	15.0	28.8	34.6	30.8	0.0	3.8
4k9d	12.5	45.8	25.0	16.7	0.0	0.0
4lsm	12.5	54.5	23.0	4.5	0.0	0.0
5c7i	24.1	48.3	17.2	0.0	0.0	10.3
5tso	8.6	74.3	8.6	8.6	0.0	0.0
GD_eu_Av	14.1	41.8	28.8	13.9	0.0	1.5
lo6z	31.6	60.5	7.9	0.0	0.0	0.0
				22.7		
1v9n	13.6	31.8	31.8	22.1	0.0	0.0

Discovery of rim region between core and surface of proteins

244a 28.6 57.1 14.3 0.0 0.0 0.0 $2x0i$ 50.0 0.0 50.0 0.0 0.0 0.0 $4bgu$ 50.9 16.4 20.0 12.7 0.0 0.0 $4bgv$ 100.0 0.0 0.0 0.0 0.0 0.0 $6ihd$ 100.0 0.0 0.0 0.0 0.0 $matheta$ 53.5 23.7 17.7 5.1 0.0 0.0 $matheta$ 55.7 54.3 11.4 8.6 0.0 0.0 $1bdm$ 25.7 54.3 11.4 8.6 0.0 0.0 $1guz$ 33.3 60.0 0.0 6.7 0.0 0.0 $1gut$ 11.1 11.1 33.3 44.4 0.0 0.0 $1gv1$ 11.1 11.1 33.3 44.4 0.0 0.0 $1gv1$ 11.1 11.1 33.3 44.4 0.0 0.0 $3d5t$ 28.0 12.0 48.0 12.0 0.0 0.0 $3d5t$ 28.0 12.0 48.0 12.0 0.0 0.0 $3gyh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3gyh$ 48.6 8.1 </th <th></th> <th></th> <th>-</th> <th>_</th> <th>-</th> <th>-</th> <th></th>			-	_	-	-	
4bgu 50.9 16.4 20.0 12.7 0.0 0.0 4bgv 100.0 0.0 0.0 0.0 0.0 0.0 6ihd 100.0 0.0 0.0 0.0 0.0 0.0 MD_ar_av 53.5 23.7 17.7 5.1 0.0 0.0 Ibbp 19.1 21.3 51.1 8.5 0.0 0.0 lemd 35.9 15.4 28.2 20.5 0.0 0.0 lguz 33.3 60.0 0.0 6.7 0.0 0.0 lguz 33.3 60.0 0.0 6.7 0.0 0.0 lguz 33.3 60.0 0.0 6.7 0.0 0.0 lguz 23.2 25.8 17.7 3.2 0.0 0.0 lguz 28.2 41.0 20.5 10.3 0.0 0.0 3fig 11.8 5.9 55.9 26.5 0.0 0.0	2d4a	28.6	57.1	14.3	0.0	0.0	0.0
$4gv$ 100.0 0.0 0.0 0.0 0.0 0.0 6ihd 100.0 0.0 0.0 0.0 0.0 0.0 MD_ar_av 53.5 23.7 17.7 5.1 0.0 0.0 Ibbm 25.7 54.3 11.4 8.6 0.0 0.0 lemd 35.9 15.4 28.2 20.5 0.0 0.0 lguz 33.3 60.0 0.0 6.7 0.0 0.0 lgv1 11.1 11.1 33.3 44.4 0.0 0.0 lgv2 33.3 60.0 0.0 6.7 0.0 0.0 lgv1 11.1 11.1 33.3 44.4 0.0 0.0 lgv1 11.1 11.1 33.3 44.4 0.0 0.0 lgv1 11.8 5.9 55.9 26.5 0.0 0.0 3fib 21.4 72.4 0.0 3.4 0.0 0.0	2x0i	50.0	0.0	50.0	0.0	0.0	0.0
6ild 100.0 0.0 0.0 0.0 0.0 0.0 MD_ar_av 53.5 23.7 17.7 5.1 0.0 0.0 lb8p 19.1 21.3 51.1 8.5 0.0 0.0 lbdm 25.7 54.3 11.4 8.6 0.0 0.0 lemd 35.9 15.4 28.2 20.5 0.0 0.0 lguz 33.3 60.0 0.0 6.7 0.0 0.0 lgv1 11.1 11.1 33.3 44.4 0.0 0.0 lgv2 33.2 25.8 17.7 3.2 0.0 0.0 lgv1 11.1 11.1 33.3 44.4 0.0 0.0 lgv3 28.2 41.0 20.5 10.3 0.0 0.0 365 28.2 41.0 20.5 0.0 0.0 0.0 361 28.0 12.0 0.0 0.0 0.0 0.0	4bgu	50.9	16.4	20.0	12.7	0.0	0.0
MD_ar_av53.523.717.75.10.00.0lb8p19.121.351.18.50.00.0lbdm25.754.311.48.60.00.0lemd35.915.428.220.50.00.0lguz33.360.00.06.70.00.0lguz33.360.00.06.70.00.0lguz11.111.133.344.40.00.0lur553.225.817.73.20.00.0lz2i28.241.020.510.30.00.03d5t28.012.048.012.00.00.03fi911.85.955.926.50.00.03gvh48.68.124.318.90.00.03gvh48.68.124.318.90.00.03grm4.229.266.70.00.00.03tl230.661.31.60.00.06.54e0b26.226.219.028.60.00.05ujk64.04.026.06.00.00.06aco15.729.427.527.50.00.06itl37.931.031.00.00.00.06itl37.931.031.00.00.00.06itl37.931.031.00.00.0 <td< td=""><td>4bgv</td><td>100.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	4bgv	100.0	0.0	0.0	0.0	0.0	0.0
1b8p 19.1 21.3 51.1 8.5 0.0 0.0 $1bdm$ 25.7 54.3 11.4 8.6 0.0 0.0 $1end$ 35.9 15.4 28.2 20.5 0.0 0.0 $1guz$ 33.3 60.0 0.0 6.7 0.0 0.0 $1guz$ 33.3 60.0 0.0 6.7 0.0 0.0 $1guz$ 53.2 25.8 17.7 3.2 0.0 0.0 $1z2i$ 28.2 41.0 20.5 10.3 0.0 0.0 $3d5t$ 28.0 12.0 48.0 12.0 0.0 0.0 $3filk$ 24.1 72.4 0.0 3.4 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 <	6ihd	100.0	0.0	0.0	0.0	0.0	0.0
Ibdm25.754.311.48.60.00.0lemd 35.9 15.4 28.2 20.5 0.0 0.0 lguz 33.3 60.0 0.0 6.7 0.0 0.0 lgv1 11.1 11.1 33.3 44.4 0.0 0.0 lur5 53.2 25.8 17.7 3.2 0.0 0.0 lz2i 28.2 41.0 20.5 10.3 0.0 0.0 $3d5t$ 28.0 12.0 48.0 12.0 0.0 0.0 $3d5t$ 28.0 12.0 48.0 12.0 0.0 0.0 $3gyh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3gyh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3rpm$ 4.2 29.2 66.7 0.0 0.0 $3rpm$ 4.2 29.2 66.7 0.0 0.0 $3t12$ 30.6 61.3 1.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $5ujk$ 64.0 4.0 26.0 60.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 <	MD_ar_av	53.5	23.7	17.7	5.1	0.0	0.0
lemd 35.9 15.4 28.2 20.5 0.0 0.0 lguz 33.3 60.0 0.0 6.7 0.0 0.0 lgv1 11.1 11.1 33.3 44.4 0.0 0.0 lur5 53.2 25.8 17.7 3.2 0.0 0.0 $1z2i$ 28.2 41.0 20.5 10.3 0.0 0.0 $3d5t$ 28.0 12.0 48.0 12.0 0.0 0.0 $3f9$ 11.8 5.9 55.9 26.5 0.0 0.0 $3fg1k$ 24.1 72.4 0.0 3.4 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3grm$ 4.2 29.2 66.7 0.0 0.0 0.0 $3t12$ 30.6 61.3 1.6 0.0 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6id$ 33.3 30.0 <td>1b8p</td> <td>19.1</td> <td>21.3</td> <td>51.1</td> <td>8.5</td> <td>0.0</td> <td>0.0</td>	1b8p	19.1	21.3	51.1	8.5	0.0	0.0
lguz 33.3 60.0 0.0 6.7 0.0 0.0 lgv1 11.1 11.1 33.3 44.4 0.0 0.0 lur5 53.2 25.8 17.7 3.2 0.0 0.0 lz2i 28.2 41.0 20.5 10.3 0.0 0.0 $3d5t$ 28.0 12.0 48.0 12.0 0.0 0.0 $3fi9$ 11.8 5.9 55.9 26.5 0.0 0.0 $3fik$ 24.1 72.4 0.0 3.4 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3grm$ 4.2 29.2 66.7 0.0 0.0 0.0 $3tl2$ 30.6 61.3 1.6 0.0 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6hal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6itk$ 37.9 31.0 </td <td>1bdm</td> <td>25.7</td> <td>54.3</td> <td>11.4</td> <td>8.6</td> <td>0.0</td> <td>0.0</td>	1bdm	25.7	54.3	11.4	8.6	0.0	0.0
lgvl11.111.133.344.40.00.0lur5 53.2 25.8 17.7 3.2 0.0 0.0 lz2i 28.2 41.0 20.5 10.3 0.0 0.0 $3d5t$ 28.0 12.0 48.0 12.0 0.0 0.0 $3fi9$ 11.8 5.9 55.9 26.5 0.0 0.0 $3fik$ 24.1 72.4 0.0 3.4 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3nep$ 27.3 9.1 36.4 27.3 0.0 0.0 $3rpm$ 4.2 29.2 66.7 0.0 0.0 0.0 $3il2$ 30.6 61.3 1.6 0.0 0.0 6.5 $4e0b$ 26.2 26.2 19.0 28.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6aoa$ 15.7 29.4 27.5 27.5 0.0 0.0 $6aba$ 33.3 30.0 31.0 0.0 0.0 0.0 $6aba$ 37.9 31.0 31.0 0.0 0.0 $10k$ 37.9 31.0 31.0 0.0 0.0 $10k$ 37.9 31.0 31.0 0.0 0	1emd	35.9	15.4	28.2	20.5	0.0	0.0
lur5 53.2 25.8 17.7 3.2 0.0 0.0 $1z2i$ 28.2 41.0 20.5 10.3 0.0 0.0 $3d5t$ 28.0 12.0 48.0 12.0 0.0 0.0 $3fi9$ 11.8 5.9 55.9 26.5 0.0 0.0 $3fik$ 24.1 72.4 0.0 3.4 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3grm$ 4.2 29.2 66.7 0.0 0.0 0.0 $3p7m$ 4.2 29.2 66.7 0.0 0.0 0.0 $3tl2$ 30.6 61.3 1.6 0.0 0.0 0.0 $4cob$ 26.2 26.2 19.0 28.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6bal$ 33.3 30.0 31.0 0.0 0.0 $6itl$ 20.5 30.8 38.5 10.3 0.0 0.0 $11md$ 46.7 28.9 24.4 0.0 0.0 0.0 $11md$ 46.7 28.9	1guz	33.3	60.0	0.0	6.7	0.0	0.0
122i 28.2 41.0 20.5 10.3 0.0 0.0 $3d5t$ 28.0 12.0 48.0 12.0 0.0 0.0 $3fi9$ 11.8 5.9 55.9 26.5 0.0 0.0 $3fik$ 24.1 72.4 0.0 3.4 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3prm$ 4.2 29.2 66.7 0.0 0.0 0.0 $3tl2$ 30.6 61.3 1.6 0.0 0.0 6.5 $4e0b$ 26.2 26.2 19.0 28.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 $6itd$ 20.5 30.8 38.5 10.3 0.0 0.0 $1riv$ 38.8 24.5 28.6 8.2 0.0 0.0 31.6 31.8 43.2 <	1gv1	11.1	11.1	33.3	44.4	0.0	0.0
3d5t 28.0 12.0 48.0 12.0 0.0 0.0 $3fi9$ 11.8 5.9 55.9 26.5 0.0 0.0 $3flk$ 24.1 72.4 0.0 3.4 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3prm$ 4.2 29.2 66.7 0.0 0.0 0.0 $3pTm$ 4.2 29.2 66.7 0.0 0.0 0.0 $3tl2$ 30.6 61.3 1.6 0.0 0.0 6.5 $4e0b$ 26.2 26.2 19.0 28.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4tvo$ 56.8 25.0 11.4 6.8 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 $6itl$ 20.5 30.8 38.5 10.3 0.0 0.0 $1mld$ 46.7 28.9 24.4 0.0 0.0 0.0 11.4 28.6 3.6 0.0 0.0 20.5 4.5 27.7 28.1 13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <	1ur5	53.2	25.8	17.7	3.2	0.0	0.0
3fi9 11.8 5.9 55.9 26.5 0.0 0.0 $3flk$ 24.1 72.4 0.0 3.4 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3nep$ 27.3 9.1 36.4 27.3 0.0 0.0 $3p7m$ 4.2 29.2 66.7 0.0 0.0 0.0 $3tl2$ 30.6 61.3 1.6 0.0 0.0 6.5 $4e0b$ 26.2 26.2 19.0 28.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 $6itl$ 20.5 30.8 38.5 10.3 0.0 0.0 $1civ$ 38.8 24.5 28.6 8.2 0.0 0.0 $1md$ 46.7 28.9 24.4 0.0 0.0 0.0 $1md$ 46.7 28.9 $24.$	1z2i	28.2	41.0	20.5	10.3	0.0	0.0
3flk 24.1 72.4 0.0 3.4 0.0 0.0 $3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3nep$ 27.3 9.1 36.4 27.3 0.0 0.0 $3p7m$ 4.2 29.2 66.7 0.0 0.0 0.0 $3tl2$ 30.6 61.3 1.6 0.0 0.0 6.5 $4e0b$ 26.2 26.2 19.0 28.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4tvo$ 56.8 25.0 11.4 6.8 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 0.0 $6itk$ 37.9 27.7 28.1 13.1 0.0 0.3 $1civ$ 38.8 24.5 28.6 8.2 0.0 0.0 $1mld$ 46.7 28.9 24.4 0.0 0.0 0.0 $1mld$ 46.7 28.9 24.4 0.0 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 11.1 $2i6t$ 9.1 $18.$	3d5t	28.0	12.0	48.0	12.0	0.0	0.0
$3gvh$ 48.6 8.1 24.3 18.9 0.0 0.0 $3nep$ 27.3 9.1 36.4 27.3 0.0 0.0 $3p7m$ 4.2 29.2 66.7 0.0 0.0 0.0 $3tl2$ 30.6 61.3 1.6 0.0 0.0 6.5 $4e0b$ 26.2 26.2 19.0 28.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4tvo$ 56.8 25.0 11.4 6.8 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 MD_ba_Av 30.9 27.7 28.1 13.1 0.0 0.3 $1civ$ 38.8 24.5 28.6 8.2 0.0 0.0 $1mld$ 46.7 28.9 24.4 0.0 0.0 0.0 $2fn7$ 56.7 16.7 23.3 3.3 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 0.0 $2g76$ 0.0 71.4 28.6 <	3fi9	11.8	5.9	55.9	26.5	0.0	0.0
$3nep$ 27.3 9.1 36.4 27.3 0.0 0.0 $3pTm$ 4.2 29.2 66.7 0.0 0.0 0.0 $3tl2$ 30.6 61.3 1.6 0.0 0.0 6.5 $4e0b$ 26.2 26.2 19.0 28.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4tvo$ 56.8 25.0 11.4 6.8 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 0.0 $6itl$ 20.5 30.8 38.5 10.3 0.0 0.0 MD_ba_Av 30.9 27.7 28.1 13.1 0.0 0.3 $1civ$ 38.8 24.5 28.6 8.2 0.0 0.0 $1mld$ 46.7 28.9 24.4 0.0 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 11.1 $2i6t$ 9.1 18.2 45.5 27.3 0.0 0.0 $4h7p$ 17.3 <	3flk	24.1	72.4	0.0	3.4	0.0	0.0
$3p7m$ 4.2 29.2 66.7 0.0 0.0 0.0 $3tl2$ 30.6 61.3 1.6 0.0 0.0 6.5 $4e0b$ 26.2 26.2 19.0 28.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4tvo$ 56.8 25.0 11.4 6.8 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 $6itl$ 20.5 30.8 38.5 10.3 0.0 0.0 MD_ba_Av 30.9 27.7 28.1 13.1 0.0 0.3 $1civ$ 38.8 24.5 28.6 8.2 0.0 0.0 $1mld$ 46.7 28.9 24.4 0.0 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 11.1 $2i6t$ 9.1 18.2 45.5 27.3 0.0 0.0 $4h7p$ 17.3 32.7 0.0 50.0 0.0 0.0	3gvh	48.6	8.1	24.3	18.9	0.0	0.0
$3d2$ 30.6 61.3 1.6 0.0 0.0 6.5 $4e0b$ 26.2 26.2 19.0 28.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4tvo$ 56.8 25.0 11.4 6.8 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 0.0 $6itk$ 37.9 30.8 38.5 10.3 0.0 0.0 mD_ba_Av 30.9 27.7 28.1 13.1 0.0 0.3 $1civ$ 38.8 24.5 28.6 8.2 0.0 0.0 $1mld$ 46.7 28.9 24.4 0.0 0.0 0.0 $2fn7$ 56.7 16.7 23.3 3.3 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 11.1 $2i6t$ 9.1 18.2 45.5 27.3 0.0 0.0 $4h7p$ 17.3 32.7 0.0 50.0 0.0 0.0	3nep	27.3	9.1	36.4	27.3	0.0	0.0
$4e0b$ 26.2 26.2 19.0 28.6 0.0 0.0 $4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4tvo$ 56.8 25.0 11.4 6.8 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6bal$ 33.3 30.0 31.0 0.0 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 0.0 $6itl$ 20.5 30.8 38.5 10.3 0.0 0.0 MD_ba_Av 30.9 27.7 28.1 13.1 0.0 0.3 $1civ$ 38.8 24.5 28.6 8.2 0.0 0.0 $1mld$ 46.7 28.9 24.4 0.0 0.0 0.0 $2fn7$ 56.7 16.7 23.3 3.3 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 11.1 $2i6t$ 9.1 18.2 45.5 27.3 0.0 11.1 $2i6t$ 9.1 18.2 45.5 27.3 0.0 0.0 $4h7p$ 17.3 32.7 0.0 50.0 0.0 0.0	3p7m	4.2	29.2	66.7	0.0	0.0	0.0
$4ror$ 44.4 5.6 38.9 11.1 0.0 0.0 $4tvo$ 56.8 25.0 11.4 6.8 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 0.0 $6itl$ 20.5 30.8 38.5 10.3 0.0 0.0 MD_ba_Av 30.9 27.7 28.1 13.1 0.0 0.3 $1civ$ 38.8 24.5 28.6 8.2 0.0 0.0 $1mld$ 46.7 28.9 24.4 0.0 0.0 0.0 $1sev$ 14.3 53.6 28.6 3.6 0.0 0.0 $2fn7$ 56.7 16.7 23.3 3.3 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 0.0 $2hjr$ 38.9 22.2 0.0 27.8 0.0 11.1 $2i6t$ 9.1 18.2 45.5 27.3 0.0 0.0 $3i0p$ 19.0 69.0 9.5 2.4 0.0 0.0	3tl2	30.6	61.3	1.6	0.0	0.0	6.5
$4tvo$ 56.8 25.0 11.4 6.8 0.0 0.0 $5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 0.0 $6itl$ 20.5 30.8 38.5 10.3 0.0 0.0 MD_ba_Av 30.9 27.7 28.1 13.1 0.0 0.3 $1civ$ 38.8 24.5 28.6 8.2 0.0 0.0 $1mld$ 46.7 28.9 24.4 0.0 0.0 0.0 $1sev$ 14.3 53.6 28.6 3.6 0.0 0.0 $2fn7$ 56.7 16.7 23.3 3.3 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 11.1 $2i6t$ 9.1 18.2 45.5 27.3 0.0 11.1 $2i6t$ 9.1 18.2 45.5 27.3 0.0 0.0 $4h7p$ 17.3 32.7 0.0 50.0 0.0 0.0	4e0b	26.2	26.2	19.0	28.6	0.0	0.0
$5ujk$ 64.0 4.0 26.0 6.0 0.0 0.0 $6aoo$ 15.7 29.4 27.5 27.5 0.0 0.0 $6bal$ 33.3 30.0 30.0 6.7 0.0 0.0 $6itk$ 37.9 31.0 31.0 0.0 0.0 0.0 $6itl$ 20.5 30.8 38.5 10.3 0.0 0.0 MD_ba_Av 30.9 27.7 28.1 13.1 0.0 0.3 $Iciv$ 38.8 24.5 28.6 8.2 0.0 0.0 $Imld$ 46.7 28.9 24.4 0.0 0.0 0.0 $1sev$ 14.3 53.6 28.6 3.6 0.0 0.0 $2fn7$ 56.7 16.7 23.3 3.3 0.0 0.0 $2g76$ 0.0 71.4 28.6 0.0 0.0 0.0 $2hjr$ 38.9 22.2 0.0 27.8 0.0 11.1 $2i6t$ 9.1 18.2 45.5 27.3 0.0 0.0 $3i0p$ 19.0 69.0 9.5 2.4 0.0 0.0	4ror	44.4	5.6	38.9	11.1	0.0	0.0
6aoo 15.7 29.4 27.5 27.5 0.0 0.0 6bal 33.3 30.0 30.0 6.7 0.0 0.0 6itk 37.9 31.0 31.0 0.0 0.0 0.0 6itk 37.9 31.0 31.0 0.0 0.0 0.0 6itl 20.5 30.8 38.5 10.3 0.0 0.0 MD_ba_Av 30.9 27.7 28.1 13.1 0.0 0.3 1civ 38.8 24.5 28.6 8.2 0.0 0.0 1mld 46.7 28.9 24.4 0.0 0.0 0.0 1sev 14.3 53.6 28.6 3.6 0.0 0.0 2fn7 56.7 16.7 23.3 3.3 0.0 0.0 2g76 0.0 71.4 28.6 0.0 0.0 0.0 2hjr 38.9 22.2 0.0 27.8 0.0 11.1 <td>4tvo</td> <td>56.8</td> <td>25.0</td> <td>11.4</td> <td>6.8</td> <td>0.0</td> <td>0.0</td>	4tvo	56.8	25.0	11.4	6.8	0.0	0.0
6bal 33.3 30.0 30.0 6.7 0.0 0.0 6itk 37.9 31.0 31.0 0.0 0.0 0.0 0.0 6itl 20.5 30.8 38.5 10.3 0.0 0.0 MD_ba_Av 30.9 27.7 28.1 13.1 0.0 0.3 1civ 38.8 24.5 28.6 8.2 0.0 0.0 1mld 46.7 28.9 24.4 0.0 0.0 0.0 1sev 14.3 53.6 28.6 3.6 0.0 0.0 2fn7 56.7 16.7 23.3 3.3 0.0 0.0 2g76 0.0 71.4 28.6 0.0 0.0 0.0 2hjr 38.9 22.2 0.0 27.8 0.0 11.1 2i6t 9.1 18.2 45.5 27.3 0.0 0.0 3i0p 19.0 69.0 9.5 2.4 0.0 <	5ujk	64.0	4.0	26.0	6.0	0.0	0.0
6itk37.931.031.00.00.00.06itl20.530.838.510.30.00.0MD_ba_Av30.927.728.113.10.00.31civ38.824.528.68.20.00.01mld46.728.924.40.00.00.01sev14.353.628.63.60.00.02dfd31.843.220.54.50.00.02g760.071.428.60.00.00.02hjr38.922.20.027.80.011.12i6t9.118.245.527.30.00.03i0p19.069.09.52.40.00.04h7p17.332.70.050.00.00.0	баоо	15.7	29.4	27.5	27.5	0.0	0.0
6itl20.530.838.510.30.00.0MD_ba_Av30.927.728.113.10.00.31civ38.824.528.68.20.00.01mld46.728.924.40.00.00.01sev14.353.628.63.60.00.02dfd31.843.220.54.50.00.02fn756.716.723.33.30.00.02g760.071.428.60.00.011.12i6t9.118.245.527.30.00.03i0p19.069.09.52.40.00.04h7p17.332.70.050.00.00.0	6bal	33.3	30.0	30.0	6.7	0.0	0.0
MD_ba_Av30.927.728.113.10.00.31civ38.824.528.68.20.00.01mld46.728.924.40.00.00.01sev14.353.628.63.60.00.02dfd31.843.220.54.50.00.02fn756.716.723.33.30.00.02g760.071.428.60.00.011.12i6t9.118.245.527.30.00.03i0p19.069.09.52.40.00.04h7p17.332.70.050.00.00.0	6itk	37.9	31.0	31.0	0.0	0.0	0.0
1civ38.824.528.68.20.00.01mld46.728.924.40.00.00.01sev14.353.628.63.60.00.02dfd31.843.220.54.50.00.02fn756.716.723.33.30.00.02g760.071.428.60.00.00.02hjr38.922.20.027.80.011.12i6t9.118.245.527.30.00.03i0p19.069.09.52.40.00.04h7p17.332.70.050.00.00.0	6itl	20.5	30.8	38.5	10.3	0.0	0.0
1mld46.728.924.40.00.00.01sev14.353.628.63.60.00.02dfd31.843.220.54.50.00.02fn756.716.723.33.30.00.02g760.071.428.60.00.00.02hjr38.922.20.027.80.011.12i6t9.118.245.527.30.00.03i0p19.069.09.52.40.00.04h7p17.332.70.050.00.00.0	MD_ba_Av	30.9	27.7	28.1	13.1	0.0	0.3
1sev14.353.628.63.60.00.02dfd31.843.220.54.50.00.02fn756.716.723.33.30.00.02g760.071.428.60.00.00.02hjr38.922.20.027.80.011.12i6t9.118.245.527.30.00.03i0p19.069.09.52.40.00.04h7p17.332.70.050.00.00.0	1civ	38.8	24.5	28.6	8.2	0.0	0.0
2dfd31.843.220.54.50.00.02fn756.716.723.33.30.00.02g760.071.428.60.00.00.02hjr38.922.20.027.80.011.12i6t9.118.245.527.30.00.03i0p19.069.09.52.40.00.04h7p17.332.70.050.00.00.0	1mld	46.7	28.9	24.4	0.0	0.0	0.0
2fn756.716.723.33.30.00.02g760.071.428.60.00.00.02hjr38.922.20.027.80.011.12i6t9.118.245.527.30.00.03i0p19.069.09.52.40.00.04h7p17.332.70.050.00.00.0	1sev	14.3	53.6	28.6	3.6	0.0	0.0
2g760.071.428.60.00.00.02hjr38.922.20.027.80.011.12i6t9.118.245.527.30.00.03i0p19.069.09.52.40.00.04h7p17.332.70.050.00.00.0	2dfd	31.8	43.2	20.5	4.5	0.0	0.0
2hjr 38.9 22.2 0.0 27.8 0.0 11.1 2i6t 9.1 18.2 45.5 27.3 0.0 0.0 3i0p 19.0 69.0 9.5 2.4 0.0 0.0 4h7p 17.3 32.7 0.0 50.0 0.0 0.0	2fn7	56.7	16.7	23.3	3.3	0.0	0.0
2i6t 9.1 18.2 45.5 27.3 0.0 0.0 3i0p 19.0 69.0 9.5 2.4 0.0 0.0 4h7p 17.3 32.7 0.0 50.0 0.0 0.0	2g76	0.0	71.4	28.6	0.0	0.0	0.0
3i0p19.069.09.52.40.00.04h7p17.332.70.050.00.00.0	2hjr	38.9	22.2	0.0	27.8	0.0	11.1
4h7p 17.3 32.7 0.0 50.0 0.0 0.0	2i6t	9.1	18.2	45.5	27.3	0.0	0.0
	3i0p	19.0	69.0	9.5	2.4	0.0	0.0
4mdh 9.3 51.2 23.3 16.3 0.0 0.0	4h7p	17.3	32.7	0.0	50.0	0.0	0.0
	4mdh	9.3	51.2	23.3	16.3	0.0	0.0

Discovery of rim region between core and surface of proteins

4plh	62.5	29.2	8.3	0.0	0.0	0.0
4plt	43.2	22.7	27.3	6.8	0.0	0.0
4uuo	25.0	50.0	0.0	25.0	0.0	0.0
5nue	36.7	8.2	53.1	2.0	0.0	0.0
5zi2	25.5	2.0	17.6	54.9	0.0	0.0
6um4	22.2	44.4	22.2	11.1	0.0	0.0
7mdh	26.1	17.4	43.5	13.0	0.0	0.0
MD_eu_AV	29.1	33.6	22.5	14.2	0.0	0.6

Domains of life and enzyme class specific representative protein's normalized frequency of unique water in different types of cavities and their average (grey row) value.

Table 9: Details of interaction frequency of shell-water in different types of cavities.

Jetans of interaction frequency of shen-water in uniferent types of cavities.							
•				č	syTw		
					0.0		
					0.0		
					0.0		
					0.0		
12.9	23.5	63.5	0.0	0.0	0.0		
46.7	25.3	20.0	8.0	0.0	0.0		
40.2	47.4	2.1	10.3	0.0	0.0		
28.5	30.5	33.5	6.8	0.6	0.0		
42.2	42.2	15.6	0.0	0.0	0.0		
32.6	42.1	9.5	15.8	0.0	0.0		
43.2	30.6	22.5	3.6	0.0	0.0		
72.7	14.5	1.8	10.9	0.0	0.0		
23.8	66.0	0.0	10.2	0.0	0.0		
23.5	47.0	25.2	4.3	0.0	0.0		
52.7	36.3	11.0	0.0	0.0	0.0		
2.3	34.1	39.8	23.9	0.0	0.0		
0.0	64.7	35.3	0.0	0.0	0.0		
32.6	41.9	17.8	7.6	0.0	0.0		
59.6	24.6	15.8	0.0	0.0	0.0		
0.0	83.8	0.0	16.3	0.0	0.0		
29.4	14.1	35.3	21.2	0.0	0.0		
66.2	23.0	0.0	10.8	0.0	0.0		
35.6	36.6	20.9	6.8	0.0	0.0		
38.5	28.2	31.4	1.9	0.0	0.0		
47.4	29.9	22.7	0.0	0.0	0.0		
4.5	47.7	31.0	16.8	0.0	0.0		
43.8	30.3	16.9	9.0	0.0	0.0		
26.2	23.3	44.1	6.4	0.0	0.0		
27.3	19.7	32.6	20.5	0.0	0.0		
	cyTw 43.5 23.2 1.7 31.5 12.9 46.7 40.2 28.5 42.2 32.6 43.2 72.7 23.8 23.5 52.7 2.3 0.0 32.6 59.6 0.0 29.4 66.2 35.6 38.5 47.4 4.5 43.8 26.2	cyTw $cyryTw$ 43.57.523.223.21.746.131.540.712.923.546.725.340.247.428.530.542.242.232.642.143.230.672.714.523.866.023.547.052.736.32.334.10.064.732.641.959.624.60.083.829.414.166.223.035.636.638.528.247.429.94.547.743.830.326.223.3	cyTw $cyryTw$ $cyrysyTw$ 43.57.530.623.223.250.01.746.146.131.540.722.212.923.563.546.725.320.040.247.42.128.530.533.542.242.215.632.642.19.543.230.622.572.714.51.823.866.00.023.547.025.252.736.311.02.334.139.80.064.735.332.641.917.859.624.615.80.083.80.029.414.135.366.223.00.038.528.231.447.429.922.74.547.731.043.830.316.926.223.344.1	cyTw $cyryTw$ $cyrysyTw$ $cysyTw$ 43.57.530.614.323.223.250.03.61.746.146.16.131.540.722.25.612.923.563.50.046.725.320.08.040.247.42.110.328.530.533.56.842.242.215.60.032.642.19.515.843.230.622.53.672.714.51.810.923.866.00.010.223.547.025.24.352.736.311.00.02.334.139.823.90.064.735.30.032.641.917.87.659.624.615.80.00.083.80.016.329.414.135.321.266.223.00.010.835.636.620.96.838.528.231.41.947.429.922.70.04.547.731.016.843.830.316.99.026.223.344.16.4	$\mathbf{eyr}\mathbf{W}$ $\mathbf{eyr}\mathbf{y}\mathbf{T}\mathbf{w}$ $\mathbf{eys}\mathbf{y}\mathbf{T}\mathbf{w}$ $\mathbf{eys}\mathbf{y}\mathbf{T}\mathbf{w}$ $\mathbf{ry}\mathbf{T}\mathbf{w}$ 43.57.530.614.34.123.223.250.03.60.01.746.146.16.10.031.540.722.25.60.012.923.563.50.00.046.725.320.08.00.040.247.42.110.30.028.530.533.56.80.642.242.215.60.00.032.642.19.515.80.043.230.622.53.60.072.714.51.810.90.023.866.00.010.20.023.866.00.010.20.023.334.139.823.90.00.064.735.30.00.023.641.917.87.60.052.736.311.00.00.02.334.139.823.90.00.064.735.30.00.035.624.615.80.00.035.636.620.96.80.035.636.620.96.80.035.636.620.96.80.035.636.620.96.80.035.636.620.96.80.035.636.6<		

Discovery of rim region between core and surface of proteins

4rqt	19.5	39.0	41.5	0.0	0.0	0.0
4w6z	56.2	24.7	6.8	12.3	0.0	0.0
5ilg	42.4	7.6	21.2	28.8	0.0	0.0
AD_eu_Av	35.5	30.9	22.9	10.8	0.0	0.0
1b7g	28.3	0.0	64.2	7.5	0.0	0.0
1cf2	21.5	24.6	35.4	18.5	0.0	0.0
1uxt	21.3	50.6	18.4	9.6	0.0	0.0
2czc	21.3	15.8	60.5	2.6	0.0	0.0
2yyy	23.9	23.9	45.1	7.0	0.0	0.0
GD_ar_av	23.2	23.0	44.7	9.1	0.0	0.0
1euh	12.6	34.5	47.3	5.6	0.0	0.0
1gad	2.5	51.9	32.1	13.6	0.0	0.0
1gd1	5.5	58.2	14.5	20.9	0.9	0.0
lobf	1.1	43.5	37.0	18.5	0.0	0.0
2d2i	39.2	37.3	13.7	9.8	0.0	0.0
2g82	0.0	31.6	46.1	22.4	0.0	0.0
3gnq	1.0	62.9	25.7	10.5	0.0	0.0
4dib	0.0	7.7	69.2	23.1	0.0	0.0
51d5	11.5	55.7	13.1	16.4	0.0	3.3
5utm	20.2	38.5	33.9	7.3	0.0	0.0
6fzh	20.2	24.6	49.2	5.1	0.0	0.0
GD_ba_Av	10.4	40.6	34.7	13.9	0.0	0.0
1dss	14.8	33.3	11.1	35.8	0.0	4.9
1j0x	24.3	55.7	17.1	2.9	0.0	0.0
1j0x 1k3t	11.8	51.8	22.4	14.1	0.0	0.0
1vsu	6.5	31.5	53.3	8.7	0.0	0.0
1ywg	16.4	40.3	32.8	10.4	0.0	0.0
2i5p	22.1	28.6	24.7	24.7	0.0	0.0
213p 2vyn	19.5	32.9	37.8	9.8	0.0	0.0
3cps	5.4	41.1	45.5	8.0	0.0	0.0
3pym	10.8	44.2	27.5	17.5	0.0	0.0
3qv1	27.7	44.6	27.7	0.0	0.0	0.0
3sth	0.7	45.3	28.5	23.4	0.0	2.2
4k9d	10.0	55.7	28.6	5.7	0.0	0.0
4lsm	9.2	63.2	19.7	7.9	0.0	0.0
5c7i	21.5	53.8	16.9	0.0	0.0	7.7
5tso	8.1	77.8	7.1	7.1	0.0	0.0
GD_eu_Av	13.9	46.6	26.7	11.7	0.0	1.0
106z	33.9	59.6	6.4	0.0	0.0	0.0
1002 1v9n	10.0	36.7	30.8	22.5	0.0	0.0
2d4a	31.6	57.9	10.5	0.0	0.0	0.0
∠u+a	51.0	51.3	10.5	0.0	0.0	0.0

2x0i	58.8	0.0	41.2	0.0	0.0	0.0
	60.7	15.6	17.8	5.9	0.0	0.0
4bgu	100.0	0.0	0.0	0.0		
4bgv					0.0	0.0
6ihd	100.0	0.0	0.0	0.0	0.0	0.0
MD_ar_av	56.4	24.2	15.2	4.1	0.0	0.0
1b8p	25.8	13.6	55.3	5.3	0.0	0.0
1bdm	27.3	50.5	10.1	12.1	0.0	0.0
1emd	33.3	16.2	30.3	20.2	0.0	0.0
1guz	25.7	71.4	0.0	2.9	0.0	0.0
1gv1	9.4	12.5	21.9	56.3	0.0	0.0
1ur5	50.0	28.2	19.4	2.4	0.0	0.0
1z2i	35.8	39.6	18.9	5.7	0.0	0.0
3d5t	28.4	21.6	40.5	9.5	0.0	0.0
3fi9	23.3	8.1	47.7	20.9	0.0	0.0
3flk	22.5	70.6	0.0	6.9	0.0	0.0
3gvh	48.0	10.0	22.0	20.0	0.0	0.0
3nep	27.3	4.5	31.8	36.4	0.0	0.0
3p7m	8.8	28.1	63.2	0.0	0.0	0.0
3tl2	29.6	63.2	0.7	0.0	0.0	6.6
4e0b	20.6	20.6	20.6	38.3	0.0	0.0
4ror	51.4	9.9	30.6	8.1	0.0	0.0
4tvo	66.9	21.7	9.6	1.9	0.0	0.0
5ujk	66.4	6.4	20.8	6.4	0.0	0.0
баоо	12.9	26.6	34.5	25.9	0.0	0.0
бbal	31.3	27.6	36.8	4.3	0.0	0.0
6itk	30.4	29.3	40.2	0.0	0.0	0.0
6itl	22.6	42.5	24.5	10.4	0.0	0.0
MD_ba_Av	31.7	28.3	26.3	13.3	0.0	0.3
1civ	41.3	16.1	32.3	10.3	0.0	0.0
1mld	39.8	31.7	28.5	0.0	0.0	0.0
1sev	15.5	52.1	31.0	1.4	0.0	0.0
2dfd	32.3	37.6	28.6	1.5	0.0	0.0
2fn7	59.3	21.0	16.0	3.7	0.0	0.0
2g76	0.0	83.8	16.2	0.0	0.0	0.0
2hjr	52.7	21.8	0.0	18.2	0.0	7.3
2i6t	11.3	15.1	39.6	34.0	0.0	0.0
3i0p	23.1	63.8	9.2	3.8	0.0	0.0
4h7p	21.2	31.5	0.0	47.3	0.0	0.0
4mdh	9.4	56.3	25.8	8.6	0.0	0.0
4plh	54.8	42.5	2.7	0.0	0.0	0.0
4plt	41.7	24.2	30.8	3.3	0.0	0.0
				5.5	0.0	73

Discovery of rim region between core and surface of proteins

4uuo	28.6	57.1	0.0	14.3	0.0	0.0
5nue	45.8	7.6	45.8	0.8	0.0	0.0
5zi2	29.7	2.1	17.2	51.0	0.0	0.0
6um4	23.0	44.0	21.0	12.0	0.0	0.0
7mdh	40.7	11.1	35.8	12.3	0.0	0.0
MD_eu_AV	31.7	34.4	21.1	12.4	0.0	0.4

Domains of life and enzyme class specific representative protein's normalized frequency of interacting water in different types of cavities and their average (grey row) value.

Table 10 shows the normalized quantitative details on cavity SW and residue for candidate proteins of the domain-specific protein family of our database. Several points are noteworthy from the table. First, a cavity is a homogenous or heterogeneous structural unit formed by region-specific protein atoms. In addition to these, SW can also be a component. Irrespective of domains of life and enzyme families, 1/4th to 1/5th of total residues of a protein can participate in cavity. More than half of which are of the hydrophobic type (Table 10; Table 11). Second, at the same time, on average, ~20% of the SW of protein also participates in cavity formation. Notably, in all enzyme classes, the SW of cavity of archaea is much less than that of ba and eu. However, about 70% of the total cavities of a protein are filled with SW and the rests are empty. Although lower in the case of archaea, the average interaction multiplicity of SW and protein atoms is ~ 3 . Third, in cavity, the predominance of atoms in the helix is greater (~43%) than that of the strand (28%) and coil (28%). Similarly, the atoms in the co are much higher (~76%) in the cavity than that in the rm and su. Forth, a typical cavity is shown in figure 9a. It is formed by atoms of residues from the co, rm, and su regions (Table 12). The majority of the atoms are present in the helix. Cavity SWs that are present inside the cavity have much higher multiplicity than outside (Figure 9a and Table 5). Since more cavities (~76%) are present in the co, and since more are filled with SW (~70%), their role in the overall property and stability of the co is immense. Finally, it can be said that the characteristics of this cavity in a class of three enzymes regardless of the domains of life follow a certain pattern.

	ADH (average %)			MD	MDH (average %)			GDH (average %)			
Items	ar (n=7)	ba (n=9)	eu (n=14)	ar (n=7)	ba (n=22)	eu (n=18)	ar (n=5)	ba (n=11)	eu (n=15)		
R‡	20.7±5.9	20.3±4.6	20.9±3.7	20.2±4.8	20.8±5.4	23.0±4.6	20.3±6.5	22.7±3.9	25.2±3.7		
R_hb	14.2±4.0	13.1±2.9	12.8±2.6	13.9±3.5	14.8±3.4	15.1±2.4	12.1+_5.2	13.0±2.8	15.2±2.7		
R_po	4.9±1.4	3.9±1.3	4.8±1.3	3.1±1.3	4.3±1.7	4.3±1.4	3.9±1.0	5.3±1.4	5.3±0.9		
R_cr	3.6±1.3	3.3±0.9	3.2±1.3	3.2±1.2	3.8±1.5	3.6±2.2	4.2±0.4	4.4±1.3	4.6±0.8		
Fr(W)#	18.1±6.1	23.9±11.5	24.2±15.0	15.0±6.8	22.1±10.6	26.1±13.0	16.9±10.5	19.0±7.0	20.2±8.5		
FillW [#]	70.7±18.2	69.7±20.5	77.1±17.0	54.5±30.6	73.8±12.3	68.9±20.1	61.8±20.9	71.6±20.0	64.4±10. 0		
Mul [#]	2.9±0.4	3.1±0.5	3.1±0.6	2.8±0.7	2.8±0.4	3.0±0.4	2.4±0.3	3.0±0.5	2.9±0.4		
H^*	43.2±16.0	39.8±16.1	34.9±7.3	48.3±11.9	47.4±7.8	48.9±8.4	42.9±8.8	40.3±9.4	40.7±5.6		
\mathbf{S}^*	24.8±10.6	27.6±9.6	23.0±9.3	31.7±14.2	32.1±8.3	25.6±7.3	27.3±6.7	31.3±7.1	33.3±7.5		

 Table 10: Details of average cavity compositions along with standard deviation.

C^*	32.0±10.6	32.7±8.7	42.1±12.0	20.0±21.4	20.5±10.1	25.5±9.4	29.8±7.2	28.3±8.2	26.1±7.5
co*	73.1±6.2	79.3±5.7	76.9±5.6	79.6±11.0	78.6±6.1	76.6±5.7	78.6±6.1	71.3±5.6	73.2±5.8
rm*	16.0±5.0	12.8±4.4	14.6±4.1	13.6±5.6	12.9±4.6	14.2±3.9	11.4±4.2	17.5±4.1	15.7±3.8
su*	10.9±2.7	7.9±3.6	8.5±2.3	6.9±7.3	8.5±3.9	9.3±4.2	10.0±4.4	11.2±4.4	11.1±4.7

The normalization is done by total cavity atoms of a protein. [‡]Unique residues in cavities in reference to total residue of a protein. [#]Unique waters in reference to total shell-water. R, amino acid residue; W, Shell-water; fr(W), % fraction of shell-water in cavity (i.e. cavW*100/totW); Mul, Multiplicity; H, Helix; S, strand; C, Coil; co, core; rm, rim; su, surface

The average measurement of items of the cavity in the enzyme class and domains of lifespecific manner. Items include residue (R) class (hydrophobic, R_hb; polar, R_po; charged, Rcr), SW (fractional frequency fr(W) in %; frequency of the SW-filled cavity, fillW; interaction multiplicity of SW, mul), secondary structure (helix, H; strand, S; coil, C), and accessibility regions (co, rm and su).

Tab	le 11:	Details	of norma	alized	residue	conten	t in	the car	vity.

Residue	"" UUV	ADITAL		ADIIUa		Арнец	;	mdhar	••••	mdhba	mdheu GDH-ar		GDH-ar	GDH-ba		GDH-eu		
	av%	sd	%av	sd	av%	sd	av	sd	av	sd	av	sd	av	sd	av	sd	av	sd
Α	2.3	1.0	2.0	1.0	1.3	0.7	1.6	0.9	2.2	0.8	1.4	0.6	1.8	1.1	1.7	0.6	2.3	0.8
V	2.8	0.9	2.7	1.0	2.2	1.1	2.7	1.1	2.8	0.9	2.8	1.0	2.5	0.9	2.5	0.6	3.3	1.2
L	3.2	1.2	2.5	1.0	2.6	1.2	2.5	1.2	3.0	1.5	3.1	1.1	2.2	1.0	3.0	0.4	2.9	0.7
Ι	1.9	1.0	1.4	0.9	2.1	1.1	3.0	1.0	2.5	0.9	2.7	1.2	3.3	1.6	2.2	0.8	2.6	0.6
F	1.1	0.8	1.1	0.5	1.5	0.7	0.8	0.6	1.1	0.6	1.1	0.6	0.5	0.3	0.9	0.5	1.2	0.6
Μ	0.5	0.5	0.5	0.6	0.6	0.3	0.8	0.5	0.6	0.5	0.7	0.3	0.3	0.2	0.5	0.3	0.9	0.5
С	0.1	0.2	0.5	0.3	0.7	0.4	0.1	0.2	0.3	0.2	0.5	0.3	0.0	0.1	0.4	0.2	0.6	0.4
Р	1.1	0.4	0.7	0.4	0.6	0.4	0.7	0.4	0.8	0.5	0.8	0.5	0.8	0.9	0.5	0.3	0.3	0.3
G	1.3	0.8	1.7	0.7	1.4	0.6	1.6	0.8	1.6	0.9	1.3	0.4	0.7	1.0	1.4	1.0	1.3	0.6
S	1.0	0.5	0.8	0.6	1.3	0.7	0.8	0.4	0.9	0.5	1.0	0.6	0.6	0.5	1.2	0.5	1.0	0.5
Т	1.0	0.4	1.1	0.5	1.1	0.5	0.5	0.4	1.3	0.5	1.2	0.5	0.8	0.3	1.0	0.7	1.2	0.5
Ν	0.6	0.2	0.4	0.4	1.0	0.9	0.6	0.5	0.5	0.7	1.0	0.4	1.0	0.4	1.3	0.7	1.2	0.4
Q	0.7	0.4	0.4	0.4	0.5	0.4	0.3	0.4	0.4	0.4	0.5	0.4	0.3	0.2	0.4	0.3	0.6	0.3
Y	1.1	0.4	0.9	0.6	0.5	0.4	0.7	0.6	0.8	0.5	0.7	0.4	1.1	0.9	1.2	0.4	1.1	0.5
W	0.5	0.5	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.4	0.4	0.4	0.2	0.2	0.3	0.2	0.2	0.2
Н	0.5	0.4	0.5	0.2	0.5	0.3	0.3	0.2	0.4	0.4	0.5	0.3	0.5	0.3	0.3	0.3	0.4	0.4
R	0.6	0.3	0.9	0.6	0.5	0.4	0.9	0.5	0.9	0.8	0.9	0.5	1.4	0.2	1.4	0.4	1.5	0.3
K	0.8	0.8	0.6	0.2	0.9	0.4	0.7	0.7	0.7	0.4	0.9	0.9	0.7	0.2	0.9	0.5	1.0	0.5
E	1.1	0.6	0.6	0.6	0.7	0.4	0.6	0.6	0.8	0.4	0.8	0.6	0.8	0.1	0.7	0.5	0.4	0.3
D	0.6	0.2	0.7	0.4	0.6	0.6	0.7	0.4	1.0	0.5	0.8	0.4	0.9	0.1	1.1	0.4	1.3	0.3

Domains of life and enzyme class-specific normalized residue content (%) in the cavity along with standard deviation.

Discovery of rim region between core and surface of proteins

Table 12	2: De	tails	of re	egio	on (r	eg) specific	atoms of	a cavity	
		АТОМ	RES	СН	ID	Х	Y	Z	ASA SS Reg
ATOM	1	CZ	TYR	А	24	77.200	-11.273	-16.829	23.5 C rm C
ATOM	2	OH	TYR	A	24	77.356	-12.108	-15.712	23.5 C rm O
ATOM	3	CE2	TYR	A	24	76.793	-9.948	-16.667	23.5 C rm C
ATOM	4	CA	LEU	A	60	78.264	-6.035	-13.663	0.0 H co C
ATOM	5	CD2	LEU	A	60	78.671	-7.963	-11.132	0.0 H co C
ATOM	6	0	LEU	А	60	77.763	-7.028	-15.778	0.0 H co O
ATOM	7	CA	GLY	А	63	80.567	-7.435	-18.164	31.5 H rm C
ATOM	8	Ν	TRP	А	65	82.969	-8.397	-14.317	19.3 H rm N
ATOM	9	СВ	TRP	А	65	82.252	-9.140	-12.098	19.3 H rm C
ATOM	10	С	TRP	А	65	82.935	-10.842	-13.793	19.3 H rm C
ATOM	11	0	TRP	А	65	82.948	-11.793	-13.012	19.3 H rm O
ATOM	12	Ν	HIS	A	66	82.670	-11.033	-15.100	39.8 H su N
ATOM	13	CA	HIS	A	66	82.287	-12.325	-15.659	39.8 H su C
ATOM	14	СВ	HIS	А	66	81.866	-12.148	-17.141	39.8 H su C
ATOM	15	СВ	LEU	А	69	82.273	-13.356	-10.014	31.6 H rm C
ATOM	16	CD	PRO	A	71	79.096	-14.930	-13.625	11.3 C co C
ATOM	17	CG	PRO	А	71	77.727	-14.363	-13.269	11.3 C co C
ATOM	18	OH	TYR	А	75	75.691	-9.963	-12.033	1.2 S co O
ATOM	19	0	LEU	А	131	78.065	-11.628	-8.947	9.5 C co O
TER	20		LEU	А	131				
HETATM	3	0	НОН	A2	004	77.948	-10.686	-13.444	3.3 6 0
HETATM	3	0	HOH	A2	045	79.476	-9.082	-15.125	3.4 8 O
HETATM	3	0	НОН	A2	047	84.703	-10.446	-17.620	3.4 3 0
HETATM	3	0	HOH	A2	048	86.349	-10.838	-14.422	3.6 30
END									

A typical cavity in PDB format (auto generated by the AWK script) along with residue specific accessibility (ASA), secondary structure (SS) and region (co, rm and su) specific values. There are about 2000 such PDB for all proteins (Table S1). These files were further analyzed for cavity types, inside and outside water frequency, region specificity using fully-automated script.

Region-specific non-bonded interaction

The three-dimensional structure of proteins is formed by weak force or non-bonded interactions such as hydrogen bonds, electrostatic (salt-bridge; ion-pair; π -cation; π -anion, etc.), hydrophobic (π - π ; π -amide; π - σ ; π --alkyl; alkyl-alkyl, etc.), etc. [8, 18-24]. Hydrogen bonds are formed with different types of donor and acceptor atoms (main-chain, side-chain polar, carbon, π -systems, and SW).

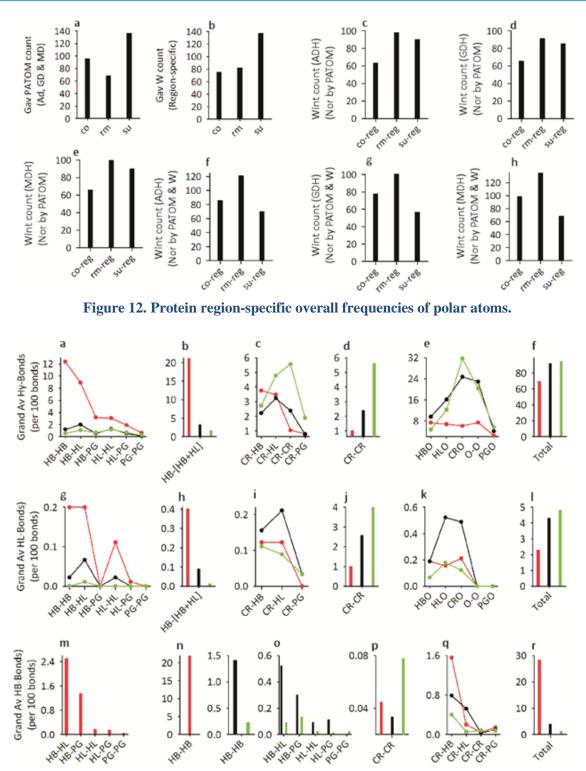


Figure 13. Normalized average nNon-bonded interactions.

Region specific grand average (irrespective of domains of life and enzyme classes) counts of protein polar atoms (PATOM) (**a**). Region specific grand average (irrespective of domains of life and enzyme classes) counts of total shell-waters (W) (**b**). PATOM normalized PATOM-

interacting Wint counts in ADH (c), GDH (d) and MDH (e). Both PATOM and W normalized Wint counts in ADH (f), GDH (g) and MDH (h).

Grand average frequency of hydrogen-bond (**a-f**), other hydrophilic (**g-l**) and hydrophobic (**m-s**) interactions regardless of enzyme classes and domains of life in different types of interresidue connections (hydrophobic residue with hydrophobic residue i.e. HB-HB; hydrophobic residue with charged residue i.e. HB-CR, and, etc.). The interaction of each type is broadly divided into four groups namely hydrophobic and hydrophilic classes; charged class, and SW mediated, and total for each group. Some region-specific plots have been plotted together and some are plotted separately for the convenience of comparison.

Of the three regions of the protein (co, rm, and su), the grand average absolute frequency of protein atoms and SW is the highest in the su-region (Figure 12a-b). Notably, although rm is significantly less dominant in protein residues, residue-classes, and secondary structures than co and su, normalized (either by only protein atoms or both by protein atoms and total SW of protein) average SW is higher than even the su (Figure 12c-e and h-j). Here, we have compared the normalized grand average of different types of inter-residue interaction for the three regions. In the case of hydrogen bonds, in co, HB-HB, HB-HL, HB-PG, HL-HL, HL-PG, and PG-PG types dominate (Figure 13a and Table 13-14) over other regions. rm maintains an intermediate level, especially for HB-HB and HB-HL types (Figure 13b). On the other hand, except for CR-HB type, which is the highest in the co (Figure 13c), other CR types hydrogen bond (CR-HL, CR-CR, and CR-PG) are the highest in the su-region (Figure 13c, d, and Table 12-13). Here too, the rm-region is at an intermediate level (Figure 13d). Interestingly, in the case of SW-mediated hydrogen bonds, in the case of other types except for CRO, the rm again exceeds su's level so that the hydrogen bond levels of these two regions are equivalent (Figure 3e, f). In this case, it is clear that while co and su dominate in HB- and CR-mediated hydrogen bonds respectively, rm, in turn, acts as an intermediate. As far as electrostatic interactions (saltbridge, ion-pair, cation- π , anion- π pi-sulfur, π -HB, etc.) are concerned, except for su dominating CR-CR type (Figure 3j), while HB-HB, HB-HL, and HL-HL types dominate in co (Figure 13g, h), CR-HB, CR-HL types are higher in the rm region (Figure 13i). In the case of SW-mediated electrostatic interactions, rm, as before, is dominant (Figure 13k). In this case, too, although rm is of intermediate level, the total interaction is almost equivalent to that of su (Figure 131). Similarly, in hydrophobic interactions (π - π , π - σ , π -amide, π -alkyl, and alkyl-alkyl) especially for the HB-HB, HB-HL, HB-CR types co is highest, which is followed by the rmregion (Figure 13m-p). Notably, su and rm regions maintain the highest level of interaction for CR-CR and CR-HB types, respectively (Figure 13q, r). All in all, this rm region maintains an intermediate level here as well (Figure 13s). It should be noted here that the types that have low frequencies show a much lower level due to normalization based on the total interactions. We see that rm dominates in many cases in SW-mediated and mixed types (HB-CR and HB-HL etc) inter-residue interactions (Figure 13 and Table 13-14).

Total Int→	region-sp	2744			883			1631	
ADH_ar_reg	со	rm	su	со	rm	su	со	rm	su
Types	Hydrog	en bond c	ategory	Hydro	phobic ca	ategory	Hydro	philic Ca	tegory
HB-HB	354	7	6	589	8	5	6	0	0
PG-PG	17	2	1	2	0	1	0	0	0
HL-HL	68	16	9	10	1	1	2	0	0
CR-CR	22	21	100	3	0	1	24	21	77
HB-PG	100	2	6	40	4	2	0	0	0
HB-HL	204	11	21	86	6	4	11	2	0
HB-CR	109	23	32	35	5	5	6	2	2
HL-PG	60	10	8	8	2	0	0	0	0
CR-PG	33	7	30	8	2	3	0	2	2
CR-HL	104	23	63	6	10	2	5	2	1
HBO	189	107	76	0	0	0	3	1	1
PGO	73	37	102	0	0	0	0	0	0
HLO	168	133	179	0	0	0	7	12	4
CRO	175	206	552	0	0	0	7	2	4
0-0	210	196	331	0	0	0	0	0	0
Total Int→	1886	801	1516	787	38	24	71	44	91
		•							
Total Int		2152			697			1488	
GDH_ar_reg	со	rm	su	со	rm	su	со	rm	su
Types	Hydrog	en bond c	ategory	Hydro	phobic ca	ategory	Hydro	philic Ca	tegory
HB-HB	216	11	6	424	19	5	1	0	0
			4				0		0
PG-PG	2	1	1	5	0	1	0	0	0
PG-PG HL-HL	2 81	1 6	1 11	5 0	0 2	1	0	0	0
HL-HL	81	6	11	0	2	1	1	0	0
HL-HL CR-CR	81 62	6 24	11 105	0 2	2 0	1 2	1 65	0 19	0 77
HL-HL CR-CR HB-PG	81 62 54	6 24 4	11 105 8	0 2 29	2 0 2	1 2 6	1 65 0	0 19 0	0 77 0
HL-HL CR-CR HB-PG HB-HL	81 62 54 154	6 24 4 30	11 105 8 11	0 2 29 62	2 0 2 2	1 2 6 3	1 65 0 1	0 19 0 1	0 77 0 0
HL-HL CR-CR HB-PG HB-HL HB-CR	81 62 54 154 101	6 24 4 30 19	11 105 8 11 42	0 2 29 62 50	2 0 2 2 6	1 2 6 3 9	1 65 0 1 3	0 19 0 1 1	0 77 0 0 2
HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG	81 62 54 154 101 26	6 24 4 30 19 4	11 105 8 11 42 6	0 2 29 62 50 4	2 0 2 2 6 0	1 2 6 3 9 0	1 65 0 1 3 0	0 19 0 1 1 0	0 77 0 0 2 0
HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG	81 62 54 154 101 26 22	6 24 4 30 19 4 4	11 105 8 11 42 6 32	$ \begin{array}{c} 0\\ 2\\ 29\\ 62\\ 50\\ 4\\ 0\\ \end{array} $	2 0 2 2 6 0 0	1 2 6 3 9 0 0	1 65 0 1 3 0 0	0 19 0 1 1 0 0	0 77 0 0 2 0 1
HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-HL	81 62 54 154 101 26 22 129	6 24 4 30 19 4 4 14	$ \begin{array}{r} 11\\ 105\\ 8\\ 11\\ 42\\ 6\\ 32\\ 53\\ \end{array} $	0 2 29 62 50 4 0 8	2 0 2 2 6 0 0 1	1 2 6 3 9 0 0 0 0	$ \begin{array}{r} 1 \\ 65 \\ 0 \\ 1 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \end{array} $	0 19 0 1 1 0 0 0 0	0 77 0 0 2 0 1 1
HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-HL HBO	81 62 54 154 101 26 22 129 149	6 24 4 30 19 4 4 4 14 71	$ \begin{array}{r} 11\\ 105\\ 8\\ 11\\ 42\\ 6\\ 32\\ 53\\ 60\\ \end{array} $	$ \begin{array}{c} 0\\ 2\\ 29\\ 62\\ 50\\ 4\\ 0\\ 8\\ 0\\ \end{array} $	2 0 2 6 0 0 1 0	1 2 6 3 9 0 0 0 0 0	$ \begin{array}{r} 1 \\ 65 \\ 0 \\ 1 \\ 3 \\ 0 \\ 0 \\ 4 \\ 2 \\ \end{array} $	0 19 0 1 1 0 0 0 2	0 77 0 2 0 1 1 1
HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-HL HBO PGO	81 62 54 154 101 26 22 129 149 41	6 24 4 30 19 4 4 4 14 71 33	$ \begin{array}{r} 11\\ 105\\ 8\\ 11\\ 42\\ 6\\ 32\\ 53\\ 60\\ 72\\ \end{array} $	$ \begin{array}{c} 0\\ 2\\ 29\\ 62\\ 50\\ 4\\ 0\\ 8\\ 0\\ 0\\ 0 \end{array} $	2 0 2 2 6 0 0 1 0 0 0	1 2 6 3 9 0 0 0 0 0 0 0	$ \begin{array}{r} 1 \\ 65 \\ 0 \\ 1 \\ 3 \\ 0 \\ 0 \\ 4 \\ 2 \\ 0 \\ 0 \end{array} $	0 19 0 1 1 0 0 0 2 0	0 77 0 0 2 0 1 1 1 0
HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-PG CR-HL HBO PGO HLO	81 62 54 154 101 26 22 129 149 41 138	6 24 4 30 19 4 4 4 14 71 33 107	$ \begin{array}{r} 11\\ 105\\ 8\\ 11\\ 42\\ 6\\ 32\\ 53\\ 60\\ 72\\ 149\\ \end{array} $	$ \begin{array}{c} 0\\ 2\\ 29\\ 62\\ 50\\ 4\\ 0\\ 8\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array} $	2 0 2 6 0 0 1 0 0 0 0	1 2 6 3 9 0 0 0 0 0 0 0 0	$ \begin{array}{c} 1 \\ 65 \\ 0 \\ 1 \\ 3 \\ 0 \\ 0 \\ 4 \\ 2 \\ 0 \\ 1 \\ \end{array} $	0 19 0 1 1 0 0 0 2 0 0 0	$ \begin{array}{c} 0 \\ 77 \\ 0 \\ 0 \\ 2 \\ 0 \\ 1 \\ 1 \\ 0 \\ 5 \end{array} $
HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-HL HBO PGO HLO CRO	81 62 54 154 101 26 22 129 149 41 138 168	$ \begin{array}{r} 6\\ 24\\ 4\\ 30\\ 19\\ 4\\ 4\\ 14\\ 71\\ 33\\ 107\\ 176\\ \end{array} $	$ \begin{array}{r} 11\\ 105\\ 8\\ 11\\ 42\\ 6\\ 32\\ 53\\ 60\\ 72\\ 149\\ 551\\ \end{array} $	$ \begin{array}{c} 0\\ 2\\ 29\\ 62\\ 50\\ 4\\ 0\\ 8\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	2 0 2 6 0 0 1 0 0 0 0 0 0	1 2 6 3 9 0 0 0 0 0 0 0 0 0	$ \begin{array}{r} 1 \\ 65 \\ 0 \\ 1 \\ 3 \\ 0 \\ 0 \\ 4 \\ 2 \\ 0 \\ 1 \\ 1 \end{array} $	0 19 0 1 1 0 0 0 2 0 0 1	$ \begin{array}{c} 0 \\ 77 \\ 0 \\ 0 \\ 2 \\ 0 \\ 1 \\ 1 \\ 0 \\ 5 \\ 1 \end{array} $

Table 13: ASA-region-specific interactions.

Discovery of rim region between core and surface of proteins

Total Int		1875			703			1900	
MDH_ar_reg	со	rm	su	со	rm	su	со	rm	su
Types	Hydrog	en bond c	ategory	Hydro	phobic ca	ategory	Hydro	philic Ca	tegory
HB-HB	267	12	12	462	4	5	4	0	0
PG-PG	30	0	7	0	0	0	0	0	0
HL-HL	47	6	19	2	0	0	1	0	0
CR-CR	10	11	126	0	0	2	7	18	61
HB-PG	69	6	10	32	1	0	0	0	0
HB-HL	194	14	12	29	6	0	4	0	0
HB-CR	51	19	50	19	7	7	3	2	0
HL-PG	42	2	16	3	1	0	0	0	0
CR-PG	12	3	46	0	0	2	0	0	0
CR-HL	33	30	109	2	5	4	2	5	7
HBO	126	40	63	0	0	0	1	0	2
PGO	66	22	73	0	0	0	0	0	0
HLO	104	99	185	0	0	0	1	3	0
CRO	97	205	637	0	0	0	3	8	0
0-0	152	174	445	0	0	0	0	0	0
Total Int→	1300	643	1810	549	24	20	26	36	70
Total Int		3472			994			1379	
Total Int ADH_ba_reg	со	3472 rm	su	со	994 rm	su	со	1379 rm	su
							Hydro		
ADH_ba_reg		rm en bond c 9			rm			rm	
ADH_ba_reg Types	Hydrog	rm en bond c	ategory	Hydro	rm phobic ca	ategory	Hydro	rm philic Ca	tegory
ADH_ba_reg Types HB-HB	Hydrog 455	rm en bond c 9	ategory 3	Hydro 866	rm phobic ca 11	ategory 3	Hydro 7	rm philic Ca 0	tegory 0
ADH_ba_reg Types HB-HB PG-PG	Hydrog 455 27	rm en bond c 9 3	ategory 3 4	Hydro 866 0	rm phobic ca 11 0	ategory 3 0 0 2	Hydro 7 0	rm philic Ca 0 0	tegory 0 0
ADH_ba_reg Types HB-HB PG-PG HL-HL	Hydrog 455 27 84	rm en bond c 9 3 10	ategory 3 4 18	Hydro 866 0 10	rm phobic ca 11 0 0	ategory 3 0 0	Hydro 7 0 4	rm philic Ca 0 0 0	tegory 0 0 0
ADH_ba_reg Types HB-HB PG-PG HL-HL CR-CR	Hydrog 455 27 84 30	rm en bond c 9 3 10 30	ategory 3 4 18 103	Hydro 866 0 10 1	rm phobic cs 11 0 0 2	ategory 3 0 0 2	Hydro 7 0 4 33	rm philic Ca 0 0 0 33	tegory 0 0 0 77
ADH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG	Hydrog 455 27 84 30 144	rm en bond c 9 3 10 30 3	ategory 3 4 18 103 14	Hydro 866 0 10 1 51 80 40	rm phobic c: 11 0 0 2 10 5 12	ategory 3 0 0 2 3	Hydro 7 0 4 33 0 11 10	rm philic Ca 0 0 0 33 0	tegory 0 0 0 77 0
ADH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL	Hydrog 455 27 84 30 144 282	rm en bond c 9 3 10 30 3 14	ategory 3 4 18 103 14 7	Hydro 866 0 10 1 51 80	rm phobic c: 11 0 0 2 10 5	ategory 3 0 2 3 0	Hydro 7 0 4 33 0 11	rm philic Ca 0 0 0 33 0 0	tegory 0 0 0 77 0 0
ADH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR	Hydrog 455 27 84 30 144 282 134	rm en bond c 9 3 10 30 3 14 27	ategory 3 4 18 103 14 7 30	Hydro 866 0 10 1 51 80 40	rm phobic c: 11 0 0 2 10 5 12	ategory 3 0 2 3 0 6	Hydro 7 0 4 33 0 11 10 3 0	rm philic Ca 0 0 0 33 0 0 0 1	tegory 0 0 0 77 0 0 2
ADH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG	Hydrog 455 27 84 30 144 282 134 64	rm en bond c 9 3 10 30 3 14 27 4	ategory 3 4 18 103 14 7 30 10	Hydro 866 0 10 1 51 80 40 3	rm phobic c: 11 0 0 2 10 5 12 3	ategory 3 0 2 3 0 6 1	Hydro 7 0 4 33 0 11 10 3	rm philic Ca 0 0 0 33 0 0 0 1 0	tegory 0 0 77 0 0 2 0
ADH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG	Hydrog 455 27 84 30 144 282 134 64 40	rm en bond c 9 3 10 30 3 14 27 4 15	ategory 3 4 18 103 14 7 30 10 32	Hydro 866 0 10 1 51 80 40 3 7	rm phobic c: 11 0 2 10 5 12 3 4	ategory 3 0 0 2 3 0 6 1 2	Hydro 7 0 4 33 0 11 10 3 0	rm philic Ca 0 0 0 33 0 0 1 0 1 0 0	tegory 0 0 0 77 0 0 2 0 0 0
ADH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-HL	Hydrog 455 27 84 30 144 282 134 64 40 120	rm en bond c 9 3 10 30 3 14 27 4 15 25	ategory 3 4 18 103 14 7 30 10 32 77	Hydro 866 0 10 1 51 80 40 3 7 5	rm phobic c: 11 0 2 10 5 12 3 4 2	ategory 3 0 2 3 0 6 1 2 0	Hydro 7 0 4 33 0 11 10 3 0 3	rm philic Ca 0 0 0 33 0 0 0 1 0 0 1	tegory 0 0 77 0 0 2 0 0 0 0 0
ADH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-PG CR-HL HBO	Hydrog 455 27 84 30 144 282 134 64 40 120 211	rm en bond c 9 3 10 30 3 14 27 4 15 25 89	ategory 3 4 18 103 14 7 30 10 32 77 86	Hydro 866 0 10 1 51 80 40 3 7 5 0	rm phobic c: 11 0 2 10 5 12 3 4 2 0	ategory 3 0 0 2 3 0 6 1 2 0 0 0 0	Hydro 7 0 4 33 0 11 10 3 0 3 8	rm philic Ca 0 0 0 33 0 0 1 0 0 1 0 1 1	tegory 0 0 0 77 0 0 2 0 0 0 1
ADH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-HL HBO PGO	Hydrog 455 27 84 30 144 282 134 64 40 120 211 93	rm en bond c 9 3 10 30 3 14 27 4 15 25 89 53	ategory 3 4 18 103 14 7 30 10 32 77 86 65	Hydro 866 0 10 1 51 80 40 3 7 5 0 0 0	rm phobic c: 11 0 2 10 5 12 3 4 2 0 0 0	ategory 3 0 2 3 0 6 1 2 0 0 0 0 0	Hydro 7 0 4 33 0 11 10 3 0 3 8 0	rm philic Ca 0 0 0 33 0 0 1 0 0 1 0 1 1 0	tegory 0 0 77 0 0 2 0 0 0 1 0
ADH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-PG CR-HL HBO PGO HLO	Hydrog 455 27 84 30 144 282 134 64 40 120 211 93 249	rm en bond c 9 3 10 30 3 14 27 4 15 25 89 53 106	ategory 3 4 18 103 14 7 30 10 32 77 86 65 162	Hydro 866 0 10 1 51 80 40 3 7 5 0 0 0	rm phobic c: 11 0 2 10 5 12 3 4 2 0 0 0 0 0	ategory 3 0 0 2 3 0 6 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hydro 7 0 4 33 0 11 10 3 0 3 8 0 12	rm philic Ca 0 0 0 33 0 0 1 0 0 1 1 0 0 1 0 0 0	tegory 0 0 0 77 0 0 2 0 0 0 1 0 5
ADH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-HL HBO PGO HLO CRO	Hydrog 455 27 84 30 144 282 134 64 40 120 211 93 249 175	rm en bond c 9 3 10 30 3 14 27 4 15 25 89 53 106 285	ategory 3 4 18 103 14 7 30 10 32 77 86 65 162 400	Hydro 866 0 10 1 51 80 40 3 7 5 0 0 0 0 0 0	rm phobic c: 11 0 2 10 5 12 3 4 2 0 0 0 0 0 0	ategory 3 0 2 3 0 6 1 2 0 6 1 2 0 0 0 0 0 0 0 0 0	Hydro 7 0 4 33 0 11 10 3 0 3 8 0 12 10	rm philic Ca 0 0 0 33 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2	tegory 0 0 77 0 0 2 0 0 0 0 1 0 5 3

Discovery of rim region between core and surface of proteins

Total Int→		4008			1456			3032	
GDH_ba_reg	со	rm	su	со	rm	su	со	rm	su
Types	Hydrog	en bond c	ategory	Hydro	phobic ca	ategory	Hydro	philic Ca	tegory
HB-HB	440	17	23	795	20	2	8	0	0
PG-PG	7	0	3	0	0	0	0	0	0
HL-HL	196	13	30	3	0	0	7	1	1
CR-CR	50	45	133	3	5	2	23	41	112
HB-PG	94	10	19	33	4	0	0	0	0
HB-HL	379	19	31	114	6	2	8	0	0
HB-CR	163	23	76	81	12	11	6	3	0
HL-PG	55	4	15	1	1	0	0	0	0
CR-PG	19	11	42	10	0	0	0	0	2
CR-HL	202	65	143	13	7	8	8	1	3
HBO	286	122	168	0	0	0	9	3	4
PGO	72	52	209	0	0	0	0	0	0
HLO	350	266	405	0	0	0	6	9	1
CRO	238	339	928	0	0	0	12	14	3
0-0	317	343	656	0	0	0	0	0	0
Total	2868	1329	2881	1053	55	25	87	72	126
Total Int→Int	7218			2594			6138		
Total Int→Int MDH_ba_reg	7218 co	rm	su	2594 co	rm	su	6138 co	rm	su
	со	rm en bond c		со	rm phobic ca		со	rm philic Ca	
MDH_ba_reg	со			со			со		
MDH_ba_reg Types	co Hydrog	en bond c	ategory	co Hydro	phobic ca	ategory	co Hydro	philic Ca	tegory
MDH_ba_reg Types HB-HB	co Hydrog 983	en bond c 26	ategory 51	co Hydro 1669	phobic ca 33	ategory 24	co Hydro 9	philic Ca 0	tegory 0
MDH_ba_reg Types HB-HB PG-PG	co Hydrog 983 64	en bond c 26 0	sategory 51 29	со Нуdro 1669 1	phobic ca 33 0	ategory 24 0	co Hydro 9 0	philic Ca 0 0	tegory 0 0
MDH_ba_reg Types HB-HB PG-PG HL-HL	co Hydrog 983 64 131	en bond c 26 0 14	ategory 51 29 63	co Hydro 1669 1 10	phobic ca 33 0 2	ategory 24 0 0	coHydro902	philic Ca 0 0 0	tegory 0 0 0
MDH_ba_reg Types HB-HB PG-PG HL-HL CR-CR	co Hydrog 983 64 131 25	en bond c 26 0 14 53	sategory 51 29 63 230	co Hydro 1669 1 10 1	phobic c: 33 0 2 0	ategory 24 0 0 7	co Hydro 9 0 2 48	philic Ca 0 0 62	tegory 0 0 0 183
MDH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG	co Hydrog 983 64 131 25 234	en bond c 26 0 14 53 9	ategory 51 29 63 230 81	co Hydro 1669 1 10 1 136	phobic c: 33 0 2 0 9	ategory 24 0 0 7 11	co Hydro 9 0 2 48 0	philic Ca 0 0 0 62 0	tegory 0 0 0 183 0
MDH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL	co Hydrog 983 64 131 25 234 686	en bond c 26 0 14 53 9 38	ategory 51 29 63 230 81 121	co Hydro 1669 1 10 1 136 124	phobic c: 33 0 2 0 9 8	ategory 24 0 0 7 11 1	co Hydro 9 0 2 48 0 14	philic Ca 0 0 62 0 0	tegory 0 0 183 0 0
MDH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-HL	co Hydrog 983 64 131 25 234 686 220	en bond c 26 0 14 53 9 38 39	ategory 51 29 63 230 81 121 249	co Hydro 1669 1 10 1 136 124 89	phobic c: 33 0 2 0 9 8 25	ategory 24 0 0 7 11 1 1 11	co Hydro 9 0 2 48 0 14 6	philic Ca 0 0 0 62 0 0 8	tegory 0 0 183 0 0 5
MDH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HB-CR	co Hydrog 983 64 131 25 234 686 220 148	en bond c 26 0 14 53 9 38 39 6	ategory 51 29 63 230 81 121 249 58	co Hydro 1669 1 10 1 136 124 89 17	phobic c: 33 0 2 0 9 8 25 3	ategory 24 0 7 11 1 1 1 1 1	co Hydro 9 0 2 48 0 14 6 0	philic Ca 0 0 62 0 0 8 0	tegory 0 0 183 0 0 5 0
MDH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HB-CR HL-PG CR-PG	co Hydrog 983 64 131 25 234 686 220 148 33	en bond c 26 0 14 53 9 38 39 6 21	ategory 51 29 63 230 81 121 249 58 113	co Hydro 1669 1 10 1 136 124 89 17 6	phobic c: 33 0 2 0 9 8 25 3 1	ategory 24 0 0 7 11 1 1 1 2	co Hydro 9 0 2 48 0 14 6 0 0	philic Ca 0 0 0 62 0 8 0 0	tegory 0 0 183 0 0 5 0 1
MDH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-HL CR-CR CR-CR CR-CR CR-CR CR-CR CR-HL	co Hydrog 983 64 131 25 234 686 220 148 33 123	en bond c 26 0 14 53 9 38 39 6 21 73	ategory 51 29 63 230 81 121 249 58 113 278	co Hydro 1669 1 10 1 136 124 89 17 6 12	phobic c: 33 0 2 0 9 8 25 3 1 6	ategory 24 0 7 11 1 1 1 1 2 0	co Hydro 9 0 2 48 0 14 6 0 2	philic Ca 0 0 62 0 0 8 0 0 0 6	tegory 0 0 183 0 0 5 0 1 3
MDH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-HL HBO	co Hydrog 983 64 131 25 234 686 220 148 33 123 603	en bond c 26 0 14 53 9 38 39 6 21 73 243	ategory 51 29 63 230 81 121 249 58 113 278 297	co Hydro 1669 1 10 1 136 124 89 17 6 12 0	phobic c: 33 0 2 0 9 8 25 3 1 6 0	ategory 24 0 0 7 11 1 1 1 1 2 0 0 0	co Hydro 9 0 2 48 0 14 6 0 2 14 6 0 12	philic Ca 0 0 0 62 0 0 8 0 0 6 9	tegory 0 0 183 0 0 5 0 1 3 7
MDH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HB-CR HL-PG CR-PG CR-HL HBO PGO	co Hydrog 983 64 131 25 234 686 220 148 33 123 603 224	en bond c 26 0 14 53 9 38 39 6 21 73 243 109	ategory 51 29 63 230 81 121 249 58 113 278 297 335	co Hydro 1669 1 10 1 136 124 89 17 6 12 0 0	phobic c: 33 0 2 0 9 8 25 3 1 6 0 0	ategory 24 0 7 11 1 1 2 0 0 0 0	co Hydro 9 0 2 48 0 14 6 0 2 12 0	philic Ca 0 0 62 0 0 8 0 0 6 9 0	tegory 0 0 183 0 0 5 0 1 3 7 0
MDH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-HB HB-CR HB-CR HL-PG CR-PG HBLO	co Hydrog 983 64 131 25 234 686 220 148 33 123 603 224 451	en bond c 26 0 14 53 9 38 39 6 21 73 243 109 407	ategory 51 29 63 230 81 121 249 58 113 278 297 335 768	co Hydro 1669 1 10 1 136 124 89 17 6 12 0 0 0 0	phobic c: 33 0 2 0 9 8 25 3 1 6 0 0 0	ategory 24 0 0 7 11 1 1 1 2 0 0 0 0 0 0	co Hydro 9 0 2 48 0 14 6 0 2 14 6 0 12 0 17	philic Ca 0 0 0 62 0 0 8 0 6 9 0 19	tegory 0 0 183 0 0 5 0 1 3 7 0 7
MDH_ba_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HB-CR HB-CR HB-CR HB-CR HL-PG CR-PG HLO PGO HLO CRO	co Hydrog 983 64 131 25 234 686 220 148 33 123 603 224 451 466	en bond c 26 0 14 53 9 38 39 6 21 73 243 109 407 698	ategory 51 29 63 230 81 121 249 58 113 278 297 335 768 1847	co Hydro 1669 1 10 1 136 124 89 17 6 12 0 0 0 0 0 0 0	phobic c: 33 0 2 0 9 8 25 3 1 6 0 0 0 0	ategory 24 0 7 11 1 1 2 0 0 0 0 0 0 0 0	co Hydro 9 0 2 48 0 14 6 0 2 14 6 0 12 0 17 6	philic Ca 0 0 62 0 0 8 0 0 6 9 0 19 4	tegory 0 0 183 0 0 5 0 1 3 7 0 7 3

Discovery of rim region between core and surface of proteins

Total Int→		7559			2629			4300	
ADH_eu_reg	со	rm	su	со	rm	su	со	rm	su
Types	Hydrog	en bond c	ategory	Hydro	phobic ca	ategory	Hydro	philic Ca	tegory
HB-HB	885	31	18	1626	30	4	29	0	0
PG-PG	54	2	11	2	1	1	0	0	0
HL-HL	225	52	27	15	0	1	6	1	0
CR-CR	56	45	208	8	0	3	75	52	173
HB-PG	285	19	12	75	3	2	0	0	0
HB-HL	642	38	33	182	10	6	16	2	0
HB-CR	273	49	73	121	18	10	16	8	3
HL-PG	168	17	23	13	5	1	0	0	0
CR-PG	105	22	62	16	8	7	1	0	2
CR-HL	189	79	169	10	6	2	5	4	2
HBO	618	312	198	0	0	0	23	4	1
PGO	236	114	243	0	0	0	0	0	0
HLO	513	436	502	0	0	0	13	17	4
CRO	441	569	1495	0	0	0	29	5	8
0-0	588	670	996	0	0	0	0	0	0
Total	5278	2455	4070	2068	81	37	213	93	193
Total Int→		5211			1842			3480	
Total Int→ GDH_eu_reg	со	5211 rm	su	CO	1842 rm	su	со	3480 rm	su
				Hydro			Hydro		I
GDH_eu_reg		rm			rm			rm	I
GDH_eu_reg Types	Hydrog	rm en bond c	ategory	Hydro 1085 0	rm phobic ca	ategory	Hydro	rm philic Ca	tegory
GDH_eu_reg Types HB-HB	Hydrog 610	rm en bond c 26	ategory 7	Hydro 1085	rm phobic ca 37	ategory 4	Hydro 12	rm philic Ca 3	tegory 0
GDH_eu_reg Types HB-HB PG-PG	Hydrog 610 8	rm en bond c 26 0	rategory 7 5	Hydro 1085 0	rm phobic ca 37 0	ategory 4 0	Hydro 12 0	rm philic Ca 3 0	tegory 0 0
GDH_eu_reg Types HB-HB PG-PG HL-HL	Hydrog 610 8 222	rm en bond c 26 0 28	7 7 5 71	Hydro 1085 0 3	rm phobic ca 37 0 0	4 0 1	Hydro 12 0 12	rm philic Ca 3 0 1	tegory 0 0 0
GDH_eu_regTypesHB-HBPG-PGHL-HLCR-CR	Hydrog 610 8 222 75	rm en bond c 26 0 28 42	ategory 7 5 71 147	Hydro 1085 0 3 0	rm phobic c: 37 0 0 2	4 0 1 0	Hydro 12 0 12 36 0 8	rm philic Ca 3 0 1 55	tegory 0 0 0
GDH_eu_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG	Hydrog 610 8 222 75 113	rm en bond c 26 0 28 42 8	ategory 7 5 71 147 15	Hydro 1085 0 3 0 36	rm phobic ca 37 0 0 2 14	ategory 4 0 1 0 4	Hydro 12 0 12 36 0	rm philic Ca 3 0 1 55 0	tegory 0 0 133 1
GDH_eu_regTypesHB-HBPG-PGHL-HLCR-CRHB-PGHB-HL	Hydrog 610 8 222 75 113 500	rm en bond c 26 0 28 42 8 42 8 44	ategory 7 5 71 147 15 29	Hydro 1085 0 3 0 36 186	rm phobic c: 37 0 0 2 14 4	ategory 4 0 1 0 4 1 1	Hydro 12 0 12 36 0 8	rm philic Ca 3 0 1 55 0 2	tegory 0 0 133 1 1
GDH_eu_reg Types HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR	Hydrog 610 8 222 75 113 500 231	rm en bond c 26 0 28 42 8 44 34	ategory 7 5 71 147 15 29 87	Hydro 1085 0 3 0 36 186 104	rm phobic c: 37 0 0 2 14 4 12	ategory 4 0 1 0 4 1 16	Hydro 12 0 12 36 0 8 3	rm philic Ca 3 0 1 55 0 2 1	tegory 0 0 133 1 1 2
GDH_eu_regTypesHB-HBPG-PGHL-HLCR-CRHB-PGHB-HLHB-CRHL-PG	Hydrog 610 8 222 75 113 500 231 67	rm en bond c 26 0 28 42 8 44 34 12	ategory 7 5 71 147 15 29 87 27	Hydro 1085 0 3 0 36 186 104 0	rm phobic c: 37 0 0 2 14 4 12 2	ategory 4 0 1 0 4 1 16 0	Hydro 12 0 12 36 0 8 3 1	rm philic Ca 3 0 1 55 0 2 1 0	tegory 0 0 133 1 1 2 0
GDH_eu_regTypesHB-HBPG-PGHL-HLCR-CRHB-PGHB-HLHB-CRHL-PGCR-PG	Hydrog 610 8 222 75 113 500 231 67 27	rm en bond c 26 0 28 42 8 44 34 12 10	ategory 7 5 71 147 15 29 87 27 54	Hydro 1085 0 3 0 36 186 104 0 15	rm phobic c: 37 0 0 2 14 4 12 2 0	ategory 4 0 1 0 4 1 16 0 2	Hydro 12 0 12 36 0 8 3 1 0	rm philic Ca 3 0 1 55 0 2 1 0 2 1 0 0	tegory 0 0 133 1 1 2 0 1
GDH_eu_regTypesHB-HBPG-PGHL-HLCR-CRHB-PGHB-HLHB-CRHL-PGCR-PGCR-HL	Hydrog 610 8 222 75 113 500 231 67 27 233	rm en bond c 26 0 28 42 8 44 34 12 10 86	ategory 7 5 71 147 15 29 87 27 54 151	Hydro 1085 0 3 0 36 186 104 0 15 18	rm phobic c: 37 0 2 14 4 12 2 0 4	ategory 4 0 1 0 4 1 16 0 2 3	Hydro 12 0 12 36 0 8 3 1 0 12	rm philic Ca 3 0 1 555 0 2 1 0 2 1 0 0 2 2	tegory 0 0 133 1 1 2 0 1 0 1 0
GDH_eu_regTypesHB-HBPG-PGHL-HLCR-CRHB-PGHB-HLHB-CRHL-PGCR-PGCR-HLHBO	Hydrog 610 8 222 75 113 500 231 67 27 233 423	rm en bond c 26 0 28 42 8 44 34 12 10 86 203	ategory 7 5 71 147 15 29 87 27 54 151 187	Hydro 1085 0 3 0 36 186 104 0 15 18 0	rm phobic c: 37 0 0 2 14 4 12 2 0 4 0	ategory 4 0 1 0 4 1 16 0 2 3 0	Hydro 12 0 12 36 0 8 3 1 0 12 16	rm philic Ca 3 0 1 55 0 2 1 0 2 1 0 0 2 5	tegory 0 0 133 1 1 2 0 1 0 0 0
GDH_eu_regTypesHB-HBPG-PGHL-HLCR-CRHB-PGHB-HLHB-CRHL-PGCR-PGCR-HLHBOPGO	Hydrog 610 8 222 75 113 500 231 67 27 233 423 73	rm en bond c 26 0 28 42 8 44 34 12 10 86 203 67	ategory 7 5 71 147 15 29 87 27 54 151 187 260	Hydro 1085 0 3 0 36 186 104 0 15 18 0 0 0	rm phobic c: 37 0 2 14 4 12 2 0 4 0 0 0	ategory 4 0 1 0 4 1 16 0 2 3 0 0	Hydro 12 0 12 36 0 8 3 1 0 12 16 0	rm philic Ca 3 0 1 555 0 2 1 0 2 1 0 0 2 5 0	tegory 0 0 133 1 1 2 0 1 0 1 0 0 0 0
GDH_eu_regTypesHB-HBPG-PGHL-HLCR-CRHB-PGHB-HLHB-CRHL-PGCR-PGCR-HLHBOPGOHLO	Hydrog 610 8 222 75 113 500 231 67 27 233 423 73 375	rm en bond c 26 0 28 42 8 44 34 12 10 86 203 67 366	ategory 7 5 71 147 15 29 87 27 54 151 187 260 550	Hydro 1085 0 3 0 36 186 104 0 15 18 0 0 0 0	rm phobic c: 37 0 2 14 4 12 2 0 4 0 0 0 0 0	ategory 4 0 1 0 4 1 16 0 2 3 0 0 0 0	Hydro 12 0 12 36 0 8 3 1 0 12 16 0 4	rm philic Ca 3 0 1 55 0 2 1 0 2 5 0 2 5 0 15	tegory 0 0 133 1 1 2 0 1 0 0 0 12
GDH_eu_regTypesHB-HBPG-PGHL-HLCR-CRHB-PGHB-HLHB-CRHL-PGCR-PGCR-HLHBOPGOHLOCRO	Hydrog 610 8 222 75 113 500 231 67 233 423 73 375 347	rm en bond c 26 0 28 42 8 44 34 12 10 86 203 67 366 354	ategory 7 5 71 147 15 29 87 27 54 151 187 260 550 1060	Hydro 1085 0 3 0 36 186 104 0 15 18 0 0 0 0 0 0	rm phobic c: 37 0 2 14 4 12 2 0 4 0 0 0 0 0 0 0	ategory 4 0 1 0 4 1 16 0 2 3 0 0 0 0 0 0	Hydro 12 0 12 36 0 8 3 1 0 12 16 0 4 8	rm philic Ca 3 0 1 555 0 2 1 0 2 1 0 2 5 0 15 14	tegory 0 0 133 1 1 2 0 1 0 1 0 0 12 6

Discovery	of rim	region	between	core a	nd	surface	of	proteins
Discovery	or min	region	between	core a	nu .	surrace	or	proteins

Total Int→		6160			1798			3801	
MDH_eu_reg	со	rm	su	со	rm	su	со	rm	su
Types	Hydrog	en bond c	ategory	Hydro	phobic ca	ategory	Hydro	philic Ca	tegory
HB-HB	799	20	43	1463	30	9	15	0	0
PG-PG	38	3	16	0	0	0	0	0	0
HL-HL	139	37	96	6	0	1	11	0	0
CR-CR	46	35	215	2	1	2	57	36	160
HB-PG	197	13	37	114	4	8	0	0	0
HB-HL	618	45	76	113	9	2	17	1	2
HB-CR	210	44	155	94	17	23	9	2	8
HL-PG	171	12	45	21	1	0	0	0	0
CR-PG	21	11	81	4	4	1	0	1	0
CR-HL	156	48	260	12	8	0	7	3	4
HBO	467	155	144	0	0	0	12	4	0
PGO	127	74	189	0	0	0	0	0	0
HLO	418	344	546	0	0	0	8	4	8
CRO	372	452	988	0	0	0	8	11	5
0-0	408	369	677	0	0	0	0	0	0
Total	4187	1662	3568	1829	74	46	144	62	187

Non-bonded interactions for the co (core), rm (rim) and su (surface) accessibility regions of ADH, GDH and MDH of ar, ba and eu. These interactions are subcategorized as hydrogen bond (HyB), hydrophobic (hb) such as π -sigma (PS), π - π (PP), amide- π (AP), alkyl-alkyl (AL), π -alkyl (PA), and hydrophilic (hl) such as π -sulfur, π -cation (PC), π -anion (PA), π -hydrogen bond (PH), salt-bridge (SB), ion-pair (IP). Each of these interaction category is classified based on the protein's residue group such as hydrophobic-hydrophobic (HB-HB), Pro and Gly (PG-PG), Hydrophilic-Hydrophilic (HL-HL), Charged-charged (CR-CR), and other inter class residues interactions (HB-PG, HB-HL, HB-CR, HL-PG, CR-PG, CR-H). Hydrophobic-shell-water (HBO), PG-shell-water (PGO), Hydrophilic-shell-water (HLO), Charged-Shell-water (CRO), and shell-water-shell-water (O-O) types of interactions are also assessed. For each accessibility region specific PDB file (co-PDB, rm-PDB and su-PDB), all these distance dependent interactions were initially determined in the Biovia Discovery Studio Visualizer v20.1.0.19295. The interaction-detailed file thus obtained was formatted to analyze automatically using homebuilt AWK-script. The absolute interaction values (frequency of interaction) are placed in the table.

HyB	arCOad	arCO gd	arCOm d	raRM ad	arRMg d	arRMm d	arSUad	arSUgd	arSUmd
HB-HB	12.9	10	14.2	0.8	1.6	1.7	0.4	0.4	0.6
PG-PG	0.6	0.1	1.6	0.2	0.1	0	0.1	0.1	0.4
HL-HL	2.5	3.8	2.5	1.8	0.9	0.9	0.6	0.7	1
CR-CR	0.8	2.9	0.5	2.4	3.4	1.6	6.1	7.1	6.6

 Table 14: domain-specific ASA-specific weak interactions.

Discovery of rim region between core and surface of proteins

HB-PG	3.6	2.5	3.7	0.2	0.6	0.9	0.4	0.5	0.5
HB-HL	7.4	7.2	10.3	1.2	4.3	2	1.3	0.7	0.6
HB-CR	4	4.7	2.7	2.6	2.7	2.7	2	2.8	2.6
HL-PG	2.2	1.2	2.2	1.1	0.6	0.3	0.5	0.4	0.8
CR-PG	1.2	1	0.6	0.8	0.6	0.4	1.8	2.2	2.4
CR-HL	3.8	6	1.8	2.6	2	4.3	3.9	3.6	5.7
HBO	6.9	6.9	6.7	12.1	10.2	5.7	4.7	4	3.3
PGO	2.7	1.9	3.5	4.2	4.7	3.1	6.3	4.8	3.8
HLO	6.1	6.4	5.5	15.1	15.4	14.1	11	10	9.7
CRO	6.4	7.8	5.2	23.3	25.3	29.2	33.8	37	33.5
0-0	7.7	6.8	8.1	22.2	19.7	24.8	20.3	17.9	23.4

HyB	baCOa d	baCO gd	baCOm d	baRM ad	baRMg d	baRMm d	baSUad	baSUgd	baSUmd
HB-HB	13.1	11	13.6	0.9	1.2	1	0.2	0.8	0.8
PG-PG	0.8	0.2	0.9	0.3	0	0	0.3	0.1	0.5
HL-HL	2.4	4.9	1.8	1	0.9	0.5	1.3	1	1
CR-CR	0.9	1.2	0.3	3	3.1	2	7.5	4.4	3.7
HB-PG	4.1	2.3	3.2	0.3	0.7	0.3	1	0.6	1.3
HB-HL	8.1	9.5	9.5	1.4	1.3	1.5	0.5	1	2
HB-CR	3.9	4.1	3	2.7	1.6	1.5	2.2	2.5	4.1
HL-PG	1.8	1.4	2.1	0.4	0.3	0.2	0.7	0.5	0.9
CR-PG	1.2	0.5	0.5	1.5	0.8	0.8	2.3	1.4	1.8
CR-HL	3.5	5	1.7	2.5	4.5	2.8	5.6	4.7	4.5
HBO	6.1	7.1	8.4	9	8.4	9.4	6.2	5.5	4.8
PGO	2.7	1.8	3.1	5.3	3.6	4.2	4.7	6.9	5.5
HLO	7.2	8.7	6.2	10.7	18.3	15.7	11.7	13.3	12.5
CRO	5	5.9	6.5	28.7	23.3	26.9	29	30.6	30.1
0-0	5.8	7.9	8.9	23.5	23.6	25.6	19.1	21.6	22

HyB	euCOad	euCO gd	euCOm d	euRM ad	euRMg d	euRMm d	euSUad	euSUgd	euSUmd
HB-HB	11.7	11.7	13	1.2	1.4	1.1	0.4	0.2	1.1
PG-PG	0.7	0.2	0.6	0.1	0	0.2	0.3	0.1	0.4
HL-HL	3	4.3	2.3	2	1.5	2.1	0.6	2	2.5
CR-CR	0.7	1.4	0.7	1.7	2.3	1.9	4.8	4.2	5.7
HB-PG	3.8	2.2	3.2	0.7	0.4	0.7	0.3	0.4	1
HB-HL	8.5	9.6	10	1.4	2.4	2.5	0.8	0.8	2
HB-CR	3.6	4.4	3.4	1.9	1.8	2.4	1.7	2.5	4.1
HL-PG	2.2	1.3	2.8	0.6	0.7	0.7	0.5	0.8	1.2
CR-PG	1.4	0.5	0.3	0.8	0.5	0.6	1.4	1.6	2.1

Discovery of rim region between core and surface of proteins

CR-HL	2.5	4.5	2.5	3	4.7	2.7	3.9	4.3	6.8
HBO	8.2	8.1	7.6	11.9	11	8.6	4.6	5.4	3.8
PGO	3.1	1.4	2.1	4.3	3.6	4.1	5.7	7.5	5
HLO	6.8	7.2	6.8	16.6	19.9	19.1	11.7	15.8	14.4
CRO	5.8	6.7	6	21.6	19.2	25.1	34.8	30.5	26
0-0	7.8	6.7	6.6	25.5	21.1	20.5	23.2	18.5	17.8

HL	arCOad	arCO gd	arCOm d	arRM ad	arRMg d	arRMm d	arSUad	arSUgd	arSUmd
HB-HB	0.2	0	0.2	0	0	0	0	0	0
PG-PG	0	0	0	0	0	0	0	0	0
HL-HL	0.1	0	0.1	0	0	0	0	0	0
CR-CR	0.9	3	0.4	2.4	2.7	2.5	4.8	5.2	3.2
HB-PG	0	0	0	0	0	0	0	0	0
HB-HL	0.4	0	0.2	0.2	0.1	0	0	0	0
HB-CR	0.1	0.1	0.3	0.2	0.1	0.2	0.2	0.2	0
HL-PG	0	0	0	0	0	0	0	0	0
CR-PG	0	0	0	0.2	0	0	0.1	0.1	0
CR-HL	0.1	0.1	0.2	0.2	0	0.7	0.1	0.1	0.4
HBO	0.1	0.1	0.1	0.1	0.3	0	0.1	0.1	0.1
PGO	0	0	0	0	0	0	0	0	0
HLO	0.3	0	0.1	1.4	0	0.4	0.2	0.3	0
CRO	0.3	0	0.2	0.2	0.1	1.1	0.2	0.1	0
0-0	0	0	0	0	0	0	0	0	0

HL	baCOa d	baCog d	baCOm d	baRM ad	baRMg d	baRMm d	baSUad	baSUgd	baSUmd
HB-HB	0.2	0.2	0.1	0	0	0	0	0	0
PG-PG	0	0	0	0	0	0	0	0	0
HL-HL	0.1	0.2	0	0	0.1	0	0	0	0
CR-CR	1	0.6	0.6	3.3	2.8	2.3	5.6	3.6	2.9
HB-PG	0	0	0	0	0	0	0	0	0
HB-HL	0.3	0.1	0.2	0	0	0	0	0	0
HB-CR	0.3	0.1	0	0.1	0.2	0.3	0.2	0	0.1
HL-PG	0.1	0	0	0	0	0	0	0	0
CR-PG	0	0	0	0	0	0	0	0.1	0
CR-HL	0.1	0.2	0	0.1	0.1	0.3	0	0.1	0
HBO	0.2	0.2	0.2	0.1	0.2	0.3	0.1	0.1	0.1
PGO	0	0	0	0	0	0	0	0	0
HLO	0.3	0.1	0.2	0	0.6	0.7	0.4	0	0.1
CRO	0.3	0.3	0.1	0.2	1	0.2	0.2	0.1	0
0-0	0	0	0	0	0	0	0	0	0

HL	euCOad	euCO gd	euCOm d	euRM ad	euRMg d	euRMm d	euSUad	euSUgd	euSUmd
HB-HB	0.4	0.3	0.2	0	0.2	0	0	0	0
PG-PG	0	0	0	0	0	0	0	0	0
HL-HL	0.1	0.2	0.2	0	0.1	0	0	0	0
CR-CR	1	0.6	0.9	2	3.1	2	4.1	3.8	4.2
HB-PG	0	0	0	0	0	0	0	0	0
HB-HL	0.2	0.2	0.2	0	0.2	0.1	0	0	0.1
HB-CR	0.1	0	0.1	0.1	0.1	0.1	0	0	0.3
HL-PG	0	0	0	0	0	0	0	0	0
CR-PG	0	0	0	0	0	0.1	0	0	0
CR-HL	0.1	0.2	0.1	0.1	0.2	0.2	0	0	0.1
HBO	0.3	0.3	0.2	0.2	0.3	0.2	0	0	0
PGO	0	0	0	0	0	0	0	0	0
HLO	0.2	0.1	0.1	0.6	0.8	0.2	0.1	0.3	0.2
CRO	0.4	0.2	0.1	0.2	0.8	0.6	0.2	0.2	0.1
0-0	0	0	0	0	0	0	0	0	0
				-					
HB	arCOad	arCO gd	arCOm d	arRM ad	arRMg d	arRMm d	arSUad	arSUgd	arSUmd
HB-HB	21.5	19.6	24.7	0.9	2.6	0.5	0.4	0.4	0.3
PG-PG	0.1	0.2	0	0	0	0	0.1	0.1	0
HL-HL	0.4	0	0.2	0.1	0.3	0	0.1	0.1	0
CR-CR	0.1	0.1	0	0	0	0	0.1	0.1	0.1
HB-PG	1.4	1.3	1.7	0.4	0.3	0.1	0.1	0.4	0
HB-HL	3.1	2.9	1.7	0.7	0.3	0.8	0.3	0.2	0
HB-CR	1.3	2.2	1	0.5	0.9	1	0.3	0.6	0.4
HL-PG	0.3	0.1	0.2	0.2	0	0.1	0	0	0
CR-PG	0.3	0	0	0.2	0	0	0.2	0	0.2
CR-HL	0.2	0.3	0.2	1.1	0.1	0.7	0.1	0	0.2
HBO	0	0	0	0	0	0	0	0	0
PGO	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
HLO			0	0	0	0	0	0	0
HLO CRO	0	0	0						
	0	0	0	0	0	0	0	0	0
CRO	0 baCOa	0 baCO	0 baCOm	0 baRM	baRMg	baRMm	0 baSUad	0 baSUgd	0 baSUmd
CRO 0-0 HB	0 baCOa d	0 baCO gd	0 baCOm d	0 baRM ad	baRMg d	baRMm d	baSUad	baSUgd	baSUmd
CRO O-O	0 baCOa	0 baCO	0 baCOm	0 baRM	baRMg	baRMm			

Discovery of rim region between core and surface of proteins

CR-CR	0	0.1	0	0.2	0.4	0	0.2	0.1	0.1
HB-PG	1.5	0.8	1.9	1	0.3	0.3	0.2	0	0.2
HB-HL	2.3	2.9	1.7	0.5	0.4	0.3	0	0.1	0
HB-CR	1.2	1.9	1.2	1.2	0.9	0.9	0.5	0.4	0.2
HL-PG	0.1	0	0.2	0.3	0.1	0.1	0.1	0	0
CR-PG	0.2	0.2	0	0.4	0	0	0.2	0	0
CR-HL	0.1	0.3	0.1	0.2	0.5	0.2	0	0.2	0
HBO	0	0	0	0	0	0	0	0	0
PGO	0	0	0	0	0	0	0	0	0
HLO	0	0	0	0	0	0	0	0	0
CRO	0	0	0	0	0	0	0	0	0
0-0	0	0	0	0	0	0	0	0	0
HB	euCOad	euCO	euCOm	euRM	euRMg	euRMm	euSUad	euSUgd	euSUmd
		σd	d	ad	d	d			
HB-HB	21.6	gd 20.8	d 23.8	ad 1.1	d 2	d 1.6	0	0.1	0.2
HB-HB	21.6	20.8	23.8	1.1	2	1.6	0	0.1	0.2
HB-HB PG-PG	21.6 0	20.8 0	23.8 0	1.1 0	2 0	1.6 0	0	0.1	0.2
HB-HB PG-PG HL-HL	21.6 0 0.2	20.8 0 0.1	23.8 0 0	1.1 0 0	2 0 0	1.6 0 0	0 0 0	0.1 0 0	0.2 0 0
HB-HB PG-PG HL-HL CR-CR	21.6 0 0.2 0.1	20.8 0 0.1 0	23.8 0 0 0	1.1 0 0 0	2 0 0 0.2	1.6 0 0 0.1	0 0 0 0	0.1 0 0 0	0.2 0 0 0
HB-HB PG-PG HL-HL CR-CR HB-PG	21.6 0 0.2 0.1 1	20.8 0 0.1 0 0.7	23.8 0 0 1.8	1.1 0 0 0 0.1	2 0 0.2 0.8	1.6 0 0.1 0.2	0 0 0 0 0	0.1 0 0 0 0.1	0.2 0 0 0 0.2
HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL	21.6 0 0.2 0.1 1 2.4	20.8 0 0.1 0 0.7 3.6	23.8 0 0 1.8 1.9	1.1 0 0 0.1 0.4	2 0 0.2 0.8 0.2	1.6 0 0.1 0.2 0.5	0 0 0 0 0 0.1	0.1 0 0 0 0.1 0	0.2 0 0 0 0 0.2 0.1
HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR	21.6 0 0.2 0.1 1 2.4 1.7	20.8 0 0.1 0 0.7 3.6 2	23.8 0 0 1.8 1.9 1.5	1.1 0 0 0 0.1 0.4 0.7	2 0 0.2 0.8 0.2 0.6	1.6 0 0.1 0.2 0.5 1	0 0 0 0 0 0.1 0.2	0.1 0 0 0 0.1 0 0.4	0.2 0 0 0 0.2 0.1 0.6
HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG	21.6 0 0.2 0.1 1 2.4 1.7 0.1	20.8 0 0.1 0 0.7 3.6 2 0	23.8 0 0 1.8 1.9 1.5 0.3	1.1 0 0 0 0.1 0.4 0.7 0.2	2 0 0.2 0.8 0.2 0.6 0.1	1.6 0 0.1 0.2 0.5 1 0.1	0 0 0 0 0 0.1 0.2 0	0.1 0 0 0 0.1 0 0.4 0	0.2 0 0 0 0.2 0.1 0.6 0
HB-HB PG-PG HL-HL CR-CR HB-PG HB-RL HB-HL HB-CR HL-PG CR-PG	21.6 0 0.2 0.1 1 2.4 1.7 0.1 0.2	20.8 0 0.1 0 0.7 3.6 2 0 0.3	23.8 0 0 1.8 1.9 1.5 0.3 0.1	1.1 0 0 0.1 0.4 0.7 0.2 0.3	2 0 0.2 0.8 0.2 0.6 0.1 0	1.6 0 0.1 0.2 0.5 1 0.1	0 0 0 0 0 0 0.1 0.2 0 0.1	0.1 0 0 0.1 0 0.4 0 0	0.2 0 0 0 0.2 0.1 0.6 0 0
HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-HL	21.6 0 0.2 0.1 1 2.4 1.7 0.1 0.2 0.1	20.8 0 0.1 0 0.7 3.6 2 0 0 0.3 0.3	23.8 0 0 1.8 1.9 1.5 0.3 0.1 0.2	1.1 0 0 0.1 0.4 0.7 0.2 0.3 0.2	2 0 0.2 0.8 0.2 0.6 0.1 0 0.2	1.6 0 0.1 0.2 0.5 1 0.1 0.2 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1 0 0 0 0 0.1 0 0.4 0 0 0 0	0.2 0 0 0 0 0.2 0.1 0.6 0 0 0 0
HB-HB PG-PG HL-HL CR-CR HB-PG HB-RL HB-RR HB-CR HL-PG CR-PG CR-PG CR-HL HBO	21.6 0 0.2 0.1 1 2.4 1.7 0.1 0.2 0.1 0	20.8 0 0.1 0 0.7 3.6 2 0 0.3 0.3	23.8 0 0 1.8 1.9 1.5 0.3 0.1 0.2 0	1.1 0 0 0.1 0.4 0.7 0.2 0.3 0.2 0	$\begin{array}{c} 2 \\ 0 \\ 0 \\ 0.2 \\ 0.8 \\ 0.2 \\ 0.6 \\ 0.1 \\ 0 \\ 0.2 \\ 0 \\ 0 \\ \end{array}$	$ \begin{array}{c} 1.6 \\ 0 \\ 0.1 \\ 0.2 \\ 0.5 \\ 1 \\ 0.1 \\ 0.2 \\ 0.5 \\ 0 \\ \end{array} $	0 0 0 0 0 0 0.1 0.2 0 0.1 0 0 0	0.1 0 0 0 0.1 0 0.4 0 0 0 0 0	0.2 0 0 0 0 0.2 0.1 0.6 0 0 0 0 0 0 0
HB-HB PG-PG HL-HL CR-CR HB-PG HB-HL HB-CR HL-PG CR-PG CR-HL HBO PGO	21.6 0 0.2 0.1 1 2.4 1.7 0.1 0.2 0.1 0 0 0	20.8 0 0.1 0 0.7 3.6 2 0 0.3 0.3 0 0	23.8 0 0 1.8 1.9 1.5 0.3 0.1 0.2 0 0	$ \begin{array}{c} 1.1 \\ 0 \\ 0 \\ 0.1 \\ 0.4 \\ 0.7 \\ 0.2 \\ 0.3 \\ 0.2 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 2 \\ 0 \\ 0 \\ 0.2 \\ 0.8 \\ 0.2 \\ 0.6 \\ 0.1 \\ 0 \\ 0.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$ \begin{array}{c} 1.6 \\ 0 \\ 0.1 \\ 0.2 \\ 0.5 \\ 1 \\ 0.1 \\ 0.2 \\ 0.5 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0	0.2 0 0 0 0 0.2 0.1 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0

Non-bonded interactions for the co (core), rm (rim) and su (surface) accessibility regions of ADH (ad), GDH (gd) and MDH (md) of ar, ba and eu. These interactions are subcategorized as hydrogen bond (HyB), hydrophobic (hb) such as π -sigma (PS), π - π (PP), amide- π (AP), alkyl-alkyl (AL), π -alkyl (PA), and hydrophilic (hl) such as π -sulfur, π -cation (PC), π -anion (PA), π -hydrogen bond (PH), salt-bridge (SB), ion-pair (IP). Each of these interaction categories is classified based on the protein's residue group such as hydrophobic-hydrophobic (HB-HB), Pro and Gly (PG-PG), Hydrophilic-Hydrophilic (HL-HL), Charged-charged (CR-CR), and other inter class residues interactions (HB-PG, HB-HL, HB-CR, HL-PG, CR-PG, CR-H). Hydrophobic-shell-water (HBO), PG-shell-water (PGO), Hydrophilic-shell-water (HLO), Charged-Shell-water (CRO), and shell-water-shell-water (O-O) types of interactions are also assessed. For each accessibility region specific PDB file (co-PDB, rm-PDB and su-PDB), all

these distance dependent interactions were initially determined in the Biovia Discovery Studio Visualizer v20.1.0.19295. The interaction-detailed file thus obtained was formatted to analyze automatically using home-built AWK-script. The absolute interaction values (frequency of interaction) are normalized using the total frequency of interaction. For different domains of life (ar, ba, and eu) the number of PDB file are different and thus, the Ti value is different. Such a variation is normalized using Ti value for comparison purpose.

Discussion

Rim has a distinct composition from the core and surface regions of the protein structure

To gain insights into the pattern of globular protein structures and interactions (Rose et al., 1985; Gutheil et al. 1992; Lins et al., 2003; Sen et al., 2017; Bandyopadhyay et al., 2019; Islam et al., 2019; Bandyopadhyay et al., 2020; Biswas et al., 2020; Banerjee et al., 2021; Roy et al., 2023), we have done the current study of three protein families of three domains of life. Our observation implies that the core and surface of the globular proteins have strong preferences towards hydrophobic and charged classes, respectively. Moreover, the polar class appears to be equally likely for these two regions. We know that the polar, like hydrophobic residues, are equally important in the core's organization (Bolon & Mayo, 2001). At the same time, some polar residues (e.g., Ser) play an important role in protein solubility, like the charged class (Trevino et al., 2007). However, the rim area's KD-neutral (Fleming et al., 2006) nature may indicate that it is a non-preferential region with an equal number of hydrophobic and hydrophilic residues. The existence of such a region was speculated earlier (Lins et al., 2003; Sen Gupta et al., 2017). Although compared to the rim, these differences for the core and the surface are significant in all enzyme cases, the observed variation in its level seems to be originating from the divergence in domain-specific orthologous sequences. Taken together, the existence of the rim between the core and the surface of these three enzyme structures appears to be a general characteristic of globular proteins.

Rim is topologically and conformationally distinct from the core and the surface

The topology of the tertiary structure of the protein is largely determined by the secondary structure (Islam et al., 2018; Mitra et al., 2019). Furthermore, because the strand is extended and the helix is compact (Bolon & Mayo, 2001), these two types of secondary structure may influence protein residue packing. The significant preference for the strand and helix in the core may indicate that they contribute to the core's balance of rigidity and flexibility. At the same time, the preference for coil and helix on the surface could play a comparable role. The preference for secondary structures in the core and on the surface appears to be general phenomena. In the context of protein function, it appears that ar, ba, and eu enzymes preserve the topological pattern of their structures for these accessible regions (core and surface) via creating combinational variations in secondary structures. Notably, the predominance of such distinctive secondary structural preference strategies is less apparent in the rim region. This

could imply that the rim zone serves as a balance between these two regions (co and su) with alternate and similar preferences (for helix) for secondary structures.

Compared to the surface, the interior cavities are more distinctive of the core and rim

The internal cavity, like residue classes and secondary structures, appears to play a crucial role in the region-specific structural organization of globular proteins. To illustrate their numerical abundance, a 100-residue protein may have six to eight cavities. Our findings suggest that the cavity is closely related to the stability of the core in particular. This is most likely why charged residue, which has a surface propensity, is significantly less concentrated in the cavity. These cavities, like the secondary structure, appear to be higher-level, confined structures in the protein folding path. These, on the one hand, limit the movement of secondary structure elements (e.g., helixes) and SW by incorporating them into their structure; while on the other hand, these stability units appear to operate as a limiting step in spontaneous residue packing during the folding process (Eisenberg, 2003; Sadqi et al., 2003). In other words, without these structural units, the protein's core, in particular, could have been significantly more compact, as it contains two-thirds of the total cavities. Most cavities (~70%) trap shellwater to reinforce their structure from inside and yet retain space, particularly in compact cores. This approach is most likely used by Archaea to compact their core structure, as the water-filled cavity is substantially lower than in other domains. Archaea's protein folding environment (such as high temperature) appears to improve the mobility of water and protein components, as opposed to a shell-water trap in the cavity. Because the rim region contains the most shellwater, the water content of the cavity increases when an atom from this region is present. This propensity most likely causes heterogeneity in the cavity at the residue, residue-class, and secondary structure levels. The helix specifies the compact structure, while the cavity includes helix residues in it. Again, hydrophobic residue, which plays an important role in hydrophobic collapse, has been the primary constituent for cavity. According to these events, just as an extended beta-structure with a strong tendency for core provides flexibility at the core, the cavity, with space within itself and the inclusion of compact structure units i.e., helix and hydrophobic residues into its structure, brings a balance of flexibility and rigidity to the core. Regardless of domains of life and enzyme classes, the correlations of shell-water and its interactions may imply that the interior cavity is a generalized and pattern-wise structural feature in globular proteins.

The rim is an interaction bridge between the core and the surface

Hydrogen bonding creates a complex interaction network while preserving the distinct properties of these three accessible zones. While the core and surface have peaks in hydrophobic (also hydrophilic) and charged residue-mediated hydrogen bonding, respectively, the rim has an intermediate level in both situations, indicating that the latter region contains both types of residue. In the case of other hydrophilic and hydrophobic interactions (Nayek et al., 2015), the presence of identical events in these three zones lends credence to the theory that

the rim exists as a distinct mixed entity between the core and surface. Furthermore, in the case of shell-water interactions, the fact that the rim is often superior to the core and surface demonstrates the abundance of SW here. Taken together, it seems that the position of the residue light but mixed and SW abundant rim between the strong residue-class trend core and the surface, on the one hand, supports their structures and, on the other hand, makes the protein dynamic.

Conclusion

The core and surface of globular proteins, which are KD-positive and KD-negative, respectively, have a strong tendency towards residue types, its classes, and secondary structure elements. The rim, on the other hand, which lies between these two regions, is KD-neutral; residue-wise light, mixed, and abundance in SW. SW filled interior cavities, which are abundant in the core and rim regions in particular, act as a sub-structural entities to limit residue compaction. The predominance of cavities with space within itself and extended β -structures in the core, and the predominance of the flexible coil on the surface seem to lower the rigidity in these regions. In non-bonded interactions, the core and surface are superior to hydrophobic and charged-mediated interactions between these two types of residues are highest in their frequency in the rim region. This distinct entity of the rim seems to help maintain the structure of the core and the surface, on the one hand, and the dynamism of the protein, on the other. Our study finds applications in protein folding and protein bioinformatics.

Although our study demonstrates the existence of RIM, we believe that it is necessary to analyze it for many more proteins in the database.

Acknowledgment

We are grateful for the computational facility laboratory of the Department of Biotechnology of the University of Burdwan. We like to thank Rifat Nowaz UL Islam for his technical helps in this work.

Competing interests:

The authors declare no competing interests.

Abbreviation: hb, hydrophobic residue; cr, charged residue; po, polar residue; ar, Archaea; ba, Bacteria; eu, Eukaryote; SW, shell-water; co, core; rm, rim; su, surface; ss, secondary structure

Data availability:

While the coordinate files are available in the Protein Data Bank, these structure files were minimized for their use in the study. Minimized files are available upon request. There are also approximately 2000 cavity files in PDB format along with residue atoms' accessibility, secondary structure, and interaction multiplicity details. These PDB files can also be obtained upon request.

Code availability:

The binary version of the fully automated AWK scripts was used for the analysis of accessibility region-specific residue composition, residue class, and secondary structure and, KD value, cavity properties. Scripts are also used for the analysis of cavity PDB format files for their composition, residue propensity, types, and shell-water properties. While we have tested the program to be fully functional, error-free, and user-friendly for the proteins used here, we are presently continuing our verification works. The binary version of these could be obtained by experts working in the field upon request.

Reference:

- Agashe, V. R., Shastry, M. C. R., & Udgaonkar, J. B. (1995). Initial hydrophobic collapse in the folding of barstar. *Nature*, *377*(6551), 754-757. https://doi.org/10.1038/377754a0
- Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. *Science*, 181(4096), 223-230. https://doi.org/10.1126/science.181.4096.223
- Baker, E. N., & Hubbard, R. E. (1984). Hydrogen bonding in globular proteins. Progress in biophysics and Molecular Biology, 44(2), 97-179. https://doi.org/10.1016/0079-6107(84)90007-5
- Bandyopadhyay, A. K., & Sonawat, H. M. (2000). Salt dependent stability and unfolding of [Fe2-S2] ferredoxin of *Halobacterium salinarum*: spectroscopic investigations. *Biophysical journal*, 79(1), 501-510. https://doi.org/10.1016/S0006-3495(00)76312-0
- Bandyopadhyay, A. K., Islam, R. N. U., & Hazra, N. (2020). Salt-bridges in the microenvironment of stable protein structures. *Bioinformation*, 16(11), 900. https://doi.org/10.6026/97320630016900
- Bandyopadhyay, A. K., Islam, R. N. U., Mitra, D., Banerjee, S., & Goswami, A. (2019). Structural insights from water-ferredoxin interaction in mesophilic algae and halophilic archaea. *Bioinformation*, 15(2), 79. https://doi.org/10.6026/97320630015079
- Bandyopadhyay, A. K., Islam, R. N. U., Mitra, D., Banerjee, S., & Goswami, A. (2019). Stability of buried and networked salt-bridges (BNSB) in thermophilic proteins. *Bioinformation*, 15(1), 61. https://doi.org/10.6026/97320630015061
- Bandyopadhyay, A. K., Islam, R. N. U., Mitra, D., Banerjee, S., Yasmeen, S., & Goswami, A. (2019). Insights from the salt bridge analysis of malate dehydrogenase from *H. salinarum* and *E. coli. Bioinformation*, 15(2), 95. https://doi.org/10.6026/97320630015095
- Bandyopadhyay, A. K., Krishnamoorthy, G., & Sonawat, H. M. (2001). Structural stabilization of [2Fe-2S] ferredoxin from *Halobacterium salinarum*. *Biochemistry*, 40(5), 1284-1292. https://doi.org/10.1021/bi001614j
- Bandyopadhyay, A. K., Krishnamoorthy, G., Padhy, L. C., & Sonawat, H. M. (2007). Kinetics of salt-dependent unfolding of [2Fe–2S] ferredoxin of *Halobacterium* salinarum. Extremophiles, 11, 615-625. https://doi.org/10.1007/s00792-007-0075-0

- Banerjee, S., Gupta, P. S. S., Islam, R. N. U., & Bandyopadhyay, A. K. (2021). Intrinsic basis of thermostability of prolyl oligopeptidase from *Pyrococcus furiosus*. *Scientific Reports*, 11(1), 11553. https://doi.org/10.1038/s41598-021-90723-4
- Banerjee, S., Gupta, P. S. S., Nayek, A., Das, S., Sur, V. P., Seth, P., ... & Bandyopadhyay, A.
 K. (2015). PHYSICO2: an UNIX based standalone procedure for computation of physicochemical, window-dependent and substitution based evolutionary properties of protein sequences along with automated block preparation tool, version 2. *Bioinformation*, 11(7), 366. https://doi.org/10.6026/97320630011366
- Banerjee, S., Mondal, B., Islam, R. N. U., Gupta, P. S. S., Mitra, D., & Bandyopadhyay, A. (2018). POWAINDv1. 0: A Program for Protein-Water Interactions Determination. *Bioinformation*, 14(9), 530. https://doi.org/10.6026/97320630014530
- Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., ... & Bourne, P.
 E. (2000). The protein data bank. *Nucleic Acids Research*, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235
- Betts, M. J., & Russell, R. B. (2003). Amino acid properties and consequences of substitutions. *Bioinformatics for geneticists*, 289-316. https://doi.org/10.1002/0470867302.ch14
- Biswas, I., Mitra, D., Bandyopadhyay, A. K., & Mohapatra, P. K. D. (2020). Contributions of protein microenvironment in tannase industrial applicability: An in-silico comparative study of pathogenic and non-pathogenic bacterial tannase. *Heliyon*, 6(11). https://doi.org/10.1016/j.heliyon.2020.e05359
- Bolon, D. N., & Mayo, S. L. (2001). Polar residues in the protein core of Escherichia coli thioredoxin are important for fold specificity. *Biochemistry*, 40(34), 10047-10053. https://doi.org/10.1021/bi010427y
- Bottini, S., Bernini, A., De Chiara, M., Garlaschelli, D., Spiga, O., Dioguardi, M., ... & Niccolai, N. (2013). ProCoCoA: a quantitative approach for analyzing protein core composition. *Computational biology and chemistry*, 43, 29-34. https://doi.org/10.1016/j.compbiolchem.2012.12.007
- Ceccarelli, C., Liang, Z. X., Strickler, M., Prehna, G., Goldstein, B. M., Klinman, J. P., & Bahnson, B. J. (2004). Crystal structure and amide H/D exchange of binary complexes of alcohol dehydrogenase from *Bacillus stearothermophilus*: insight into thermostability and cofactor binding. *Biochemistry*, 43(18), 5266-5277. https://doi.org/10.1021/bi049736p
- Dalhus, B., Saarinen, M., Sauer, U. H., Eklund, P., Johansson, K., Karlsson, A., ... & Eklund, H. (2002). Structural basis for thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases. *Journal of Molecular Biology*, 318(3), 707-721. https://doi.org/10.1016/S0022-2836(02)00050-5
- Dill, K. A. (1990). Dominant forces in protein folding. *Biochemistry*, 29(31), 7133-7155. https://doi.org/10.1021/bi00483a001
- Dill, K. A., & MacCallum, J. L. (2012). The protein-folding problem, 50 years on. *Science*, *338*(6110), 1042-1046. https://doi.org/10.1126/science.1219021

- Eisenberg, D. (2003). The discovery of the α-helix and β-sheet, the principal structural features of proteins. *Proceedings of the National Academy of Sciences*, *100*(20), 11207-11210. https://doi.org/10.1073/pnas.2034522100
- Ernst, J. A., Clubb, R. T., Zhou, H. X., Gronenborn, A. M., & Clore, G. M. (1995). Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR. *Science*, 267(5205), 1813-1817. https://doi.org/10.1126/science.7892604
- Finney, J. L. (1977). The organization and function of water in protein crystals. *Philosophical Transactions of the Royal Society of London. B, Biological Sciences*, 278(959), 3-32. https://doi.org/10.1098/rstb.1977.0029
- Fleming, P. J., Gong, H., & Rose, G. D. (2006). Secondary structure determines protein topology. *Protein Science*, 15(8), 1829-1834. https://doi.org/10.1110/ps.062305106
- Flower, D. R., North, A. C., & Sansom, C. E. (2000). The lipocalin protein family: structural and sequence overview. *Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology*, 1482(1-2), 9-24. https://doi.org/10.1016/S0167-4838(00)00148-5
- Gupta, P. S. S., Banerjee, S., Islam, R. N. U., Mondal, S., Mondal, B., & Bandyopadhyay, A.
 K. (2014a). PHYSICO: An UNIX based Standalone Procedure for Computation of Individual and Group Properties of Protein Sequences. *Bioinformation*, 10(2), 105. https://doi.org/10.6026/97320630010105
- Gupta, P. S. S., Mondal, S., Mondal, B., Islam, R. N. U., Banerjee, S., & Bandyopadhyay, A.
 K. (2014b). SBION: A program for analyses of salt-bridges from multiple structure files. *Bioinformation*, 10(3), 164. https://doi.org/10.6026/97320630010164
- Gupta, P. S. S., Nayek, A., Banerjee, S., Seth, P., Das, S., Sur, V. P., ... & Bandyopadhyay, A.
 K. (2015). SBION2: Analyses of salt bridges from multiple structure files, version 2. *Bioinformation*, 11(1), 39. https://doi.org/10.6026/97320630011039
- Gutheil, W. G., Holmquist, B., & Vallee, B. L. (1992). Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. *Biochemistry*, 31(2), 475-481. https://doi.org/10.1021/bi00117a025
- Islam, R. N. U., Mitra, D., Gupta, P. S. S., Banerjee, S., Mondal, B., & Bandyopadhyay, A. K. (2018). AUTOMINv1. 0: an automation for minimization of Protein Data Bank files and its usage. *Bioinformation*, 14(9), 525. https://doi.org/10.6026/97320630014525
- Islam, R. N. U., Roy, C., Gupta, P. S. S., Banerjee, S., Mitra, D., Banerjee, S., & Bandyopadhyay, A. K. (2018). PROPAB: Computation of Propensities and Other Properties from Segments of 3D structure of Proteins. *Bioinformation*, 14(5), 190. https://doi.org/10.6026/97320630014190
- Islam, R. N. U., Roy, C., Mitra, D., Bandyopadhyay, A. K., Yasmeen, S., & Banerjee, S. (2019). Salt-bridge, aromatic-aromatic, cation-π and anion-π interactions in proteins from different domains of life. In *Biotechnology and Biological Sciences* (pp. 152-158). CRC Press. https://doi.org/10.1201/9781003001614-25

- Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., & Phillips, D. C. (1958).
 A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. *Nature*, 181(4610), 662-666. https://doi.org/10.1038/181662a0
- Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. *Journal of Molecular Biology*, 157(1), 105-132. https://doi.org/10.1016/0022-2836(82)90515-0
- Lim, V. I. (1974). Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure. *Journal of Molecular Biology*, 88(4), 857-872. https://doi.org/10.1016/0022-2836(74)90404-5
- Lins, L., Thomas, A., & Brasseur, R. (2003). Analysis of accessible surface of residues in proteins. *Protein Science*, 12(7), 1406-1417. https://doi.org/10.1110/ps.0304803
- Madern, D. (2002). Molecular evolution within the L-malate and L-lactate dehydrogenase super-family. *Journal of molecular evolution*, *54*(6), 825-840. https://doi.org/10.1007/s00239-001-0088-8
- Martinez, C. R., & Iverson, B. L. (2012). Rethinking the term "pi-stacking". *Chemical Science*, *3*(7), 2191-2201. https://doi.org/10.1039/c2sc20045g
- Mecozzi, S., West Jr, A. P., & Dougherty, D. A. (1996). Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. *Proceedings of the National Academy of Sciences*, 93(20), 10566-10571. https://doi.org/10.1073/pnas.93.20.10566
- Mitra, D., Bandyopadhyay, A. K., Islam, R. N. U., Banerjee, S., Yasmeen, S., & Mohapatra, P. K. D. (2019). Structure, salt-bridge's energetics and microenvironments of nucleoside thermophilic diphosphate kinase from halophilic, and mesophilic microbes. 107-113). In *Biotechnology* and **Biological** Sciences (pp. CRC Press. https://doi.org/10.1201/9781003001614-18
- Moon, J. H., Lee, H. J., Park, S. Y., Song, J. M., Park, M. Y., Park, H. M., ... & Kim, J. S. (2011). Structures of iron-dependent alcohol dehydrogenase 2 from *Zymomonas mobilis* ZM4 with and without NAD+ cofactor. *Journal of molecular biology*, 407(3), 413-424. https://doi.org/10.1016/j.jmb.2011.01.045
- Nayek, A., Banerjee, S., Sen Gupta, P. S., Sur, B. P., Seth, P., Das, S., ... & Bandyopadhyay, A. K. (2015). ADSETMEAS: Automated determination of salt-bridge energy terms and micro environment from atomic structures using APBS method, version 1.0. In *Protein Science*, 24, 216-217. 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY-BLACKWELL.
- Nayek, A., Gupta, P. S. S., Banerjee, S., Sur, V. P., Seth, P., Das, S., ... & Bandyopadhyay, A. K. (2015b). ADSBET2: Automated determination of salt-bridge energy-terms version 2. *Bioinformation*, 11(8), 413. https://doi.org/10.6026/97320630011413
- Nayek, A., Gupta, P. S., Banerjee, S., Das, S., Sur, V. P., Seth, P., ... & Bandyopadhyay, A. K. (2015a). ADSBET: Automated determination of salt-bridge energy terms. *Int. J. Inst. Pharm. Life Sci.*, 5, 28-36.

- Nayek, A., Sen Gupta, P. S., Banerjee, S., Mondal, B., & Bandyopadhyay, A. K. (2014). Saltbridge energetics in halophilic proteins. *Plos One*, 9(4), e93862. https://doi.org/10.1371/journal.pone.0093862
- Nayek, A., Sen Gupta, P. S., Banerjee, S., Mondal, B., & Bandyopadhyay, A. K. (2014). Saltbridge energetics in halophilic proteins. *Plos one*, 9(4), e93862. https://doi.org/10.1371/journal.pone.0093862
- Petitjean, C., Deschamps, P., López-García, P., & Moreira, D. (2015). Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota, *Genome Biology and Evolution*, 7(1), 191– 204. https://doi.org/10.1093/gbe/evu274
- Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H., & Zehfus, M. H. (1985). Hydrophobicity of amino acid residues in globular proteins. *Science*, 229(4716), 834-838. https://doi.org/10.1126/science.4023714
- Rovers, E., & Schapira, M. (2022). Methods for computer-assisted PROTAC design. *Methods in Enzymology*, 690, 311-340. https://doi.org/10.1016/bs.mie.2023.06.020
- Roy, C., Islam, R. N. U., Banerjee, S., & Bandyopadhyay, A. K. (2023). Underlying features for the enhanced electrostatic strength of the extremophilic malate dehydrogenase interface salt-bridge compared to the mesophilic one. *Journal of Biomolecular Structure and Dynamics*, 1-16. https://doi.org/10.1080/07391102.2023.2295972
- Sadqi, M., Lapidus, L. J., & Munoz, V. (2003). How fast is protein hydrophobic collapse? *Proceedings of the National Academy of Sciences*, 100(21), 12117-12122. https://doi.org/10.1073/pnas.2033863100
- Sen Gupta, P., Islam, R.N.U., Yasmeen, S. (2017). Cosurim: A program for automated computation of composition of core, rim and surface of protein data bank files and its applications. *International Journal of Engineering Science and Technology*, 9(11), 993-999.
- Song, S. Y., Xu, Y. B., Lin, Z. J., & Tsou, C. L. (1999). Structure of active site carboxymethylated D-glyceraldehyde-3-phosphate dehydrogenase from Palinurus versicolor. *Journal of Molecular Biology*, 287(4), 719-725. https://doi.org/10.1006/jmbi.1999.2628
- Song, S. Y., Xu, Y. B., Lin, Z. J., & Tsou, C. L. (1999). Structure of active site carboxymethylated D-glyceraldehyde-3-phosphate dehydrogenase from Palinurus versicolor. *Journal of Molecular Biology*, 287(4), 719-725. https://doi.org/10.1006/jmbi.1999.2628
- Soukri, A., Mougin, A., Corbier, C., Wonacott, A., Branlant, C., & Branlant, G. (1989). Role of the histidine 176 residue in glyceraldehyde-3-phosphate dehydrogenase as probed by site-directed mutagenesis. *Biochemistry*, 28(6), 2586-2592. https://doi.org/10.1021/bi00432a036
- Stollar, E. J., & Smith, D. P. (2020). Uncovering protein structure. *Essays in Biochemistry*, 64(4), 649–680. https://doi.org/10.1042/ebc20190042

- Surti, M., Patel, M., Adnan, M., Moin, A., Ashraf, S. A., Siddiqui, A. J., ... & Reddy, M. N. (2020). Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study. *RSC Advances*, 10(62), 37707-37720. https://doi.org/10.1039/D0RA06379G
- Trevino, S. R., Scholtz, J. M., & Pace, C. N. (2007). Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa. *Journal of Molecular Biology*, 366(2), 449-460. https://doi.org/10.1016/j.jmb.2006.10.026
- Tsodikov, O. V., Record Jr, M. T., & Sergeev, Y. V. (2002). Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. *Journal of Computational Chemistry*, 23(6), 600-609. https://doi.org/10.1002/jcc.10061
- Williams, R. W., Chang, A., Juretić, D., & Loughran, S. (1987). Secondary structure predictions and medium range interactions. *Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology*, 916(2), 200-204. https://doi.org/10.1016/0167-4838(87)90109-9
- Williamson, V. M., & Paquin, C. E. (1987). Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis. Molecular and General Genetics MGG, 209, 374-381. https://doi.org/10.1007/BF00329668
- Xiao, Y., Wu, K., Batool, S.S., Wang, Q., Chen, H., Zhai, X., Yu, Z., & Huang, J. (2023). Enzymatic properties of alcohol dehydrogenase PedE_M.s. derived from *Methylopila* sp. M107 and its broad metal selectivity. *Front. Microbiol.*, 14, 1191436. https://doi.org/10.3389/fmicb.2023.1191436
- Zielenkiewicz, P., & Saenger, W. (1992). Residue solvent accessibilities in the unfolded polypeptide chain. *Biophysical Journal*, 63(6), 1483-1486. https://doi.org/10.1016/S0006-3495(92)81746-0

HOW TO CITE

Amal Kumar Bandyopadhyay, Sahini Banerjee and Somnath Das (2024). Discovery of rim region between core and surface of proteins. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Jayanta Kumar Das, Dr. Mayur Doke and Dr. Vincent Avecilla (eds.), *Life as Basic Science: An Overview and Prospects for the Future Volume: 3*,pp. 41-96. ISBN: 978-81-978955-7-9 doi:https://doi.org/10.52756/lbsopf.2024.e03.003

