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Introduction: 

Nutrients, which include carbohydrates, proteins, lipids, minerals, and vitamins, are 

substances in food and are necessary for biological activity in organisms. During metabolism, the 

nutrients, after conversion into smaller molecules inside the body, are exploited in several life-

sustaining chemical reactions. Metabolism constitutes catabolism and anabolism. In catabolism, 

the breakdown of food or fuel to obtain energy occurs, whereas the reactions in which larger 

molecules are produced from smaller ones are known as anabolism. Anabolic reactions utilize 

the energy generated in catabolic reactions. Hence, the cooperative control of both processes is 

essential to sustain life (Tadokoro and Hirao, 2022). 

Stem cells (SCs) are undifferentiated cells with the ability by cell division to generate various 

cell types in an organism. They possess unique metabolic features in contrast to differentiated 

cells (Cerletti et al., 2012; Moussaieff et al., 2015; Baksh et al., 2020), and they can exclusively 
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Abstract: 

Adult stem cells stand for the regenerative ability of organisms during their lifespan. One characteristic feature 

of healthy aging is the sustainment of healthy SC populations capable of replenishing organs and physiological 

systems. The native environment of stem cells is known as the niche. It comprises the nutritional surroundings 

and is crucial to sustain the quality and quantity of stem cells available for renewal and regeneration. It is 

considered mainly that stem cells have unique metabolism and restricted nutrient requirements compared to 

completely differentiated cells. Nutrients play a significant role in stem cell physiology because many metabolites 

derived from nutrients discharged during the catabolic process can affect chromatin remodelling, epigenetic 

changes, and modulation of gene expression. Nutrient requirements differ throughout the lifespan and are altered 

by factors like individual health, physiological states including pregnancy, disease, sex, age, and during healing 

from injury. Even if present nutrition guidance mainly focuses on healthy populations and averting nutritional 

insufficiency diseases, there are growing efforts to demonstrate food-based and nutrient-based suggestions 

depending on decreasing chronic disease. Understanding the dynamics of stem cell nutritional needs throughout 

the life span, including the role of nutrition in extending biological age by blunting biological systems decay, is 

fundamental to establishing food and nutrient guidance for chronic disease reduction and health maintenance. 
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sustain their undifferentiated state throughout their entire life while making offspring cells 

devoted to differentiation in response to specific requirements to maintain tissue homeostasis. 

Several evidences support the idea that stem cells (SCs) are important in coordinating our body's 

response to nutrients, mainly because of their key role in tissue homeostasis. To accomplish this, 

tissue SCs, besides utilizing nutrients for their metabolic requirements, also adjust their functions, 

such as self-renewal, autophagy, or differentiation, to the metabolic environment and availability 

of nutrients (Cerletti et al., 2012; Yilmaz et al., 2012; Rafalski et al., 2012). Conversely, their 

relatively long lifespan, which is crucial to carry out their function in tissue turnover, holds the 

back of the coin of continually being exposed to important environmental factors like diet and 

gradually accumulating cell damage at the genetic and epigenetic level, with considerable effects 

on gene and protein expression as well as on molecular pathways (Blokzijl et al., 2016; Novak et 

al., 2021; Mondal et al., 2024). 

Nutrients are usually essential in SC physiology because of the ability of various nutrient-

derived metabolites, produced during the catabolic process, to trigger chromatin reshaping, 

epigenetic modifications, and modulation of gene expression (Lu et al., 2018). Nutrients also act 

as donors for moieties engaged in post-translational modifications. For example, in the 

hexosamine biosynthetic pathway (HBP), uridine diphosphate GlcNAc (UDP-GlcNAc) results 

in the O-GlcNAcylation of serine and threonine residues embedded in cytoplasmic, 

mitochondrial and nuclear proteins. In SCs, these post-translational changes have been found to 

cause linkages between the availability of glucose and nutrients with the epigenetic control of 

cell fate determination and differentiation (Sun et al., 2016).  

Both embryonic and adult SCs have the potential to provide tissues with new lineage of cells 

throughout their entire life. This new lineage of cells may divide symmetrically or 

asymmetrically, resulting in either SC self-renewal or differentiation. Besides several other 

factors, nutrients play a vital role in SC specification, differentiation, and performance, thus 

extending their effects on aging and disease.  Nutrients act directly on SCs or indirectly by 

controlling the SC niche (non-autonomously). In addition, nutrients can regulate the production 

of hormones, which can manipulate the nature of SCs and their niche. These direct and indirect 

stimuli result in the activation of signalling pathways, modification in metabolism, and changes 

in gene expression in SCs. In this way, the dietary input is converted into fate decisions in SCs 

(Puca et al., 2022). 

For SCs, the primary molecular mechanism linking diet and function is mediated by the 

AMPK-mTOR-SIRT1 pathway. Fasting or exercise-induced low cellular ATP levels trigger the 

phosphorylation of AMP-activated protein kinase (AMPK) by the serine-threonine kinase liver 

kinase B1 (LKB1). This results in direct or indirect modulation of enzymes involved in glucose 

(Theret et al., 2017) and lipid metabolism (Wang et al., 2018). It also modulates the mTOR 

pathway, which regulates proteostasis and cell growth (Shackelford et al., 2009). The target 

proteins of AMPK include the proteins controlling cell polarity, apoptosis (through direct 

phosphorylation of p53), cell proliferation (cyclin D1) (Shackelford et al., 2009), differentiation 

(Sarikhani et al., 2020), response to hypoxia (HIF1) and autophagy (Mihaylova et al., 2011). 
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These proteins have also been found to modify SC fate (Shackelford et al., 2009; Chung et al., 

2019). In addition, AMPK enhances cellular NAD+, which triggers the activation of the NAD-

dependent histone deacetylase SIRT1, influencing gene expression (Dai et al., 2020), protein 

synthesis, and SC self-renewal (Igarashi and Guarente, 2016).  

Nutrition has appeared as a chief regulator of the epigenome and gene expression. As a result, 

nutrition and diet can affect cell metabolism and health (Hahn et al., 2017). This capacity of 

nutrition and diet is explained by the fact that many metabolites either directly bind to chromatin 

or indirectly modulate chromatin-modifying enzymes. In SCs, epigenetic changes of DNA and 

DNA-associated histones determine their function and fate decisions. Hence, inputs from the diet 

cause modification in chromatin structure and expression of genes (Van Winkle and Ryznar, 

2019; Bar-El Dadon and Reifen, 2017; Afarideh et al., 2021; Shyamasundar et al., 2013) in 

embryonic and adult SCs. This modification, in turn, affects several processes in humans, 

including embryonic development, cell differentiation, determination of cell fate, aging, immune 

function, and oncogenic transformation (Chen, 2019; Hernández-Saavedra et al., 2017). These 

play important roles in closely correlating SC functions, nutrition, metabolism, and epigenetics 

to each other (Reid et al., 2017).  

Nutrients derived from diet, after digestion, produce simple metabolites and can be uptaken 

by SCs. These biomolecules can act as precursors of substrates or cofactors required by 

chromatin-modifying enzymes. Sometimes, these enzymes can move to the nucleus and, in 

association with specific cofactors, bring about chromatin modifications (Boukouriset al., 2016). 

Epigenetic modifications induced by nutrients result in modifications of both histones (acylation, 

acetylation, ADP-ribosylation, glycosylation, glycation, methylation, phosphorylation, 

hydroxylation, and ubiquitylation) and DNA (glycation and methylation). These modifications 

may be achieved through enzymatic or non-enzymatic reactions (Dai et al., 2020).     

Mesenchymal Stem Cells (MSCs) and their Characteristics: 

MSCs undergo mitotic divisions. One of its daughter cells remains as a stem cell while the 

other one differentiates into a mature cell, and only small numbers of these mature cells can be 

seen in mature organs and tissues in the stem cell niche (Aliborzi et al., 2016). In 1966, MSCs 

were discovered as fibroblast-like cells within the bone marrow (Aliborzi et al., 2015). Since 

then, the presence of MSCs has been confirmed in various adult tissues like endometrium 

(Ghobadi et al., 2018), adipose tissue (Kamali-Sarvestani et al., 2018), intestine (Mani et al., 

2023), dental pulp (Zare et al., 2019), and Wharton’s jelly (Nazempour et al., 2020).  Among 

various types of MSCs, intestinal stem cells (ISCs) possess a crucial role in the nutritional milieu. 

They are present in the crypts and do not come in direct contact with intestinal content. On the 

other hand, differentiated gut cells are present at the villi and come in direct contact with the 

intestinal lumen. They provide mature cell types of the intestinal epithelium throughout adult life 

(Barker et al., 2007). Inside intestine, adjacent to ISCs reside a collection of functionally 

differentiated cells including enterocytes, Paneth and goblet cells. These cells inhabit the 

intestinal epithelium and play a critical role in the nutritional environment.   
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The principal function of ISCs is to act as gut regenerative machinery. They undergo 

continuous division to reinstate their own population and create subtypes of differentiated 

epithelial cells. The nutritional conditions can modulate the production of secretory lineages such 

as Paneth cells, enterocytes, and ISCs (Alonso et al., 2018). Specific dietary exposure and fasting 

have been established to reduce the population of ISCs and their function (Alonso et al., 2018). 

Two populations of ISCs have been identified, namely Lgr5+ and Lgr4+. Lgr5+ is associated 

with regular cell renewal, while Lgr4+ is responsible for tissue regeneration. The quiescent Lgr4+ 

ISCs have the potential to be stimulated in response to injury (Wang et al., 2021). Optimal food 

intake can control and trigger symmetric divisions of ISCs (O’Brien et al., 2011).  

The MSCs can differentiate into one or more types of full-grown cells. This property of stem 

cells is called "developmental plasticity," and different stem cells have distinct potency levels 

(Mehrabani et al., 2019). Under both pathologic and physiologic conditions, MSCs can sustain 

tissue regeneration. In a specialized and dynamic microenvironment along with a separate design 

as stem cells niche SCs play a major role in tissue homeostasis. These cells have immune-

modulating properties due to the low expression of class I MHC, CD40, CD80, and CD86 and 

the absence of class II MHC expression (Hashemi et al., 2019). 

The immune modulating activity of MSCs is attributed to their interaction with immune cells 

like neutrophils, T and B cells, natural killer cells (NKs), dendritic cells (DCs), and macrophages 

(Mohammadzadeh et al., 2022). They can be used as drug carriers and can be tracked by MRI 

(Mehrabani et al., 2022). Their application has also been traced to tissue engineering (Fard et al., 

2018). Exosomes or extracellular vesicles (EVs) are the active constituents of paracrine secretion 

of MSCs. These exosomes are utilized in the management of various diseases (Khajehahmadi et 

al., 2016). Exosomes are used in the treatment of brain diseases as they can cross the blood-brain 

barrier (BBB) and enter the CNS (Payehdar et al., 2017). MicroRNAs (miRNAs) are naturally 

packaged into exosomes in MSCs. This feature of MSCs is successfully applied in the packaging 

of exogenous therapeutic miRNAs (Jahromi et al., 2017).  

Mesenchymal Stem Cells and Nutrition: 

Lifestyle and diet are key factors that influence health and vulnerability to diseases. In the 

stem cell niche, these two factors affect the quality and quantity of stem cells available for 

renewal, regeneration, and physiological reinstatement as a trademark of health (Stover et al., 

2022). Deficiencies in the nutritional environment can modify the niche of stem cells and/or 

interaction between stem cells and niche, leading to age-associated modulations of the 

proliferation of stem cells and their functions. Stem cells have distinctive metabolism. Hence, 

their nutrient requirements are of immense importance. So, consideration of the nutritional 

requirements of stem cells throughout the life span, together with the involvement of nutrition in 

expanding biological age by minimizing biological systems degeneration, is key to determining 

food and nutrient guidance to reduce the occurrence of diseases and to retain the general health 

(Stover et al., 2022).  
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MSCs as the tissue precursor were demonstrated to be incredibly relevant for obesity during 

childhood and metabolic disease risk of skeletal muscle and adipose tissues (Gyllenhammer et 

al., 2023). In this circumstance, by controlling the stem cell niche, nutrients may directly or 

indirectly impact stem cells. Nutrients also control hormone production, which can modify the 

behaviour of the stem cells and their niche. These stimuli trigger the activation of signalling 

pathways in stem cells, modify their metabolism and gene expression, and transform the dietary 

input into fate decisions. Many stem cell features are controlled by nutrients, including balanced 

asymmetric/symmetric divisions, genome and epigenome integrity, gene expression, 

metabolism, autophagy, oxidative status, differentiation, self-renewal, and exhaustion. When 

there are adequate nutrients and growth factors, stem cells undergo proliferation. This tight 

regulation is achieved by “master regulators" like mTORC1, which can monitor nutrients and 

control stem cells' metabolism and fate (Rafalski et al., 2012). 

Alternatively, intracellular metabolites like acetyl-CoA regulate epigenetic processes and 

metabolic pathways and link stem cell functions with diet and metabolism (Ghosh-Choudhary et 

al., 2020). For the fate determination of different stem cells, this link is very crucial, and self-

renewal of stem cells can be brought about by modification of nutrients or calories (Novak et al., 

2021). So, stem cells play a significant role in coordinating the body's response to nutrients 

because of their essential role in tissue homeostasis and health maintenance (Alvina et al., 2021). 

This feature of stem cells is achieved by using nutrients for their metabolic requirements and 

accomplishing many functions, like self-renewal, differentiation, or autophagy. Nutrient 

availability, metabolic environment, and diet-induced metabolic changes affect the fate of stem 

cells, lineage specification, and differentiation (Puca et al., 2022). 

In this scenario, nutrients are vital in stem cell physiology because of the ability of many 

metabolites derived from nutrients released during catabolic processes to trigger chromatin 

reorganization, epigenetic alterations, and modulation of gene expression (Lu et al., 2021). At 

the same time, molecular mechanisms that sense nutrient availability regulate important self-

renewal functions, protein synthesis, autophagy, and differentiation (Bjerkvig et al., 2005). The 

effect of diet on stem cells becomes more spectacular as stem cells have exceptional metabolic 

requirements which are changed depending on their developmental stages (Baksh et al., 2020). 

For precise activities of stem cells, stimulation of metabolic pathways is essential, making stem 

cells more explicitly dependent on nutrients compared to differentiated cells (Yilmaz et al., 2012). 

Stem cells have been reported to possess fewer reactive oxygen species (ROS) than differentiated 

cells. The total intracellular oxidation state and accumulation of ROS have been reported to be 

primarily influenced by nutrients and diet. They are believed to be key monitors of balance 

between differentiation and self-renewal (Smith et al., 2000).  

Mesenchymal Stem Cells and Amino Acids: 

Amino acids (AAs) are engaged in self-renewal, preservation of pluripotency, and 

differentiation capability of stem cells (Liu et al., 2019). Several essential AAs (EAAs) have been 

revealed to be crucial for the maintenance of MSCs (Taya et al., 2016), and their affluence was 
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demonstrated to enhance proliferation without disturbing the stemness (Nikolits et al., 2021). In 

the intestine, The Mammalian Target of Rapamycin Complex 1 (mTORC1) was reported to be a 

principal nutrient sensor, functioning as an essential controller of protein synthesis and growth, 

influencing the proliferation of stem cells and autophagy (Wang et al., 2021). 

Restriction of amino acids and proteins in the diet has been described to alter stem cell fate. 

For instance, methionine deficiency has been shown to reduce the proliferation of ISCs (Saito et 

al., 2017). In Drosophila, in response to a reduction in methionine and the methionine-derived 

S-adenosyl methionine, the midgut mitosis in ISCs was shown to diminish. This inhibition of 

mitosis in ISCs was accomplished by regulating the protein synthesis and stimulating the 

Jak/STAT ligand Unpaired 3 (Upd3) (Obata et al., 2018). Stimulation of the JNK pathway 

enhances ISC differentiation, while ISC proliferation remains unaffected despite the attenuation 

of the Jak/STAT pathway (Zhang et al., 2017). Hence, methionine was revealed to regulate cell 

proliferation (Walvekar et al., 2018). 

The function of leucine in carrying out the proliferation and differentiation of myoblasts 

through an mTORC1-MyoD cascade was reported (Dai et al., 2015). The mTOR has a vital 

function in various cellular processes, including cell growth, differentiation, and protein 

synthesis, via its role in regulating specific gene expression (Zhang et al., 2015). Arginine was 

shown to have a crucial function in the proliferation and renewal of ISCs and tissue regeneration 

(Hou et al., 2020). During the proliferation stage of myoblasts, glutamine has been revealed to 

be the second most used nutrient after glucose (Hosios et al., 2016), establishing their significant 

role in cell proliferation (Gaglio et al., 2009). The conditional EAA glutamine in diet 

supplementation was found to cause activation of ISCs, which includes an increase in total 

intestinal cell numbers (Viitanen, 2019). Dietary glutamate activates ISC proliferation and 

growth via calcium signaling (Deng et al., 2015). 

Mesenchymal Stem Cells and Fatty Acids: 

Fatty acids (FAs) are another class of molecules derived from nutrients and are crucial for 

stem cell physiology. It is confirmed by the presence of a particular lipidome signature in MSCs, 

performing a significant function in self-renewal and quiescence, asymmetric-symmetric 

division, differentiation, determination of cell fate of MSCs, and cell-to-niche interaction 

(Clémot et al., 2020). A high-fat diet (HFD) can trigger modifications in intestinal structure and 

function (Obniski et al., 2018) by modifying the regulation of ISC activity. It was described that 

some particular fatty acids, including oleic acid and palmitic acid, interact directly with the ISCs 

and stimulate peroxisome proliferator-activated receptor delta (PPAR-δ) exclusively in ISCs and 

progenitor cells to increase their stemness (Beyaz et al., 2016).  

In stem cells, the presence of excellent coordination between the synthesis of fatty acids and 

oxidation of fatty acids is necessary, and damage or removal of one or the other can lead to stem 

cell retardation (Clémot et al., 2020). High-fat diets have been shown to enhance ISC 

proliferation and self-renewal while reducing Paneth cell number and resulting in an increased 

risk of intestinal hyperplasia (Wang et al., 2021). It was found that a high-fat western-style diet 
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in mice resulted in transcriptional reprogramming in both Lgr4+ and Lgr5+ ISCs populations, 

mutations in stem cells, and nutrient-triggered modifications in stem cell populations, which are 

in line with a carcinogenesis event (Li et al., 2019). HFD-induced stress causes activation of the 

JNK pathway, and this pathway leads to Upd3 ligand secretion and activation of ISC proliferation 

(Richards et al., 2016).  

In Drosophila, short-chain fatty acids derived from microbiota were reported to control 

carbohydrate and lipid metabolism to maintain ISCs (Koh et al., 2016). In Drosophila, it was 

demonstrated that high-cholesterol diets, by changing the δ-ligand and Notch stability in the 

endoplasmic reticulum, can alter ISC cell differentiation (Obniski et al., 2018).  

Mesenchymal Stem Cells and Minerals: 

Impaired dietary intake of calcium at early stages of life might alter the adipogenic 

differentiation capability of MSCs from male offspring, with considerable expressions on the 

Wnt/β-catenin signalling pathway to exacerbate high-fat diet-induced obesity in adulthood (Li et 

al., 2022). This adipogenic differentiation is controlled by coordinating a complex network of 

several signalling pathways, which include SIRT1/SIRT2, JAK2/STAT3, TGF-β/BMP, Wnt/β-

catenin, ERK1/ERK2, and RHO family GTPase (Porro et al., 2021). Stimulation of Wnt/β-

catenin signaling can additionally prevent adipogenic differentiation and trigger osteogenic 

differentiation with the help of endogenous regulatory genes including Wnt1, Wnt10a, Wnt10b, 

Wnt5a, CTNNB1, Axin2, Gsk3β, and TGF7L2 (Matsushita., and Dzau, 2017). This 

differentiation capability was considerably decreased with age (Matsushita and Dzau, 2017). 

Hence, the nutritional posture and exposure to unfavorable factors during pregnancy and during 

lactation have a significant function in the differentiation ability of MSCs to influence later 

metabolic troubles in adulthood (Zhang et al., 2020). The Ca2+ produced in the culture medium 

was reported to have osteo-inductive features to support the osteogenic differentiation of MSCs 

(Chen et al., 2015).  

Mesenchymal Stem Cells and Energy: 

It was demonstrated that changes in energy sources can affect stem cell differentiation through 

glycolysis, the TCA cycle, as well as alterations in the generation of ROS (Burgess et al., 2014). 

ISCs were reported to have vigorous responses to intake of energy, including caloric constraint, 

fasting, and a variety of energy sources resulting from ketogenic, high carbohydrate, or high-fat 

diets (Wang et al., 2021). Under this circumstance, energy has been illustrated as the 

Lkb1/AMPK triggered kinase pathway to operate as a metabolic checkpoint and principal 

regulator of stem cell proliferation and fate. This pathway is activated when mTORC1 signalling 

is suppressed in response to reduced level of ATP and ceased cell growth. So, it can be said that 

the complex relationship between LKB1-AMPK activity and mTORC1 can affect stem cell 

proliferation, self-renewal, and apoptosis (Wang et al., 2021; Das et al., 2023) since LKB1-

AMPK signalling has an impact on Sirt1 and is triggered by fasting, caloric restriction and 

exercise which can influence the development of the ISCs and enhance the ability for tissue repair 

and regeneration (Igarashi., and Guarente, 2016).  
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Sirt1 functions as a NAD-dependent histone and nonhistone protein deacetylase and controls 

gene expression, metabolism, cell proliferation and differentiation. As level of Sirt1 declines with 

age and restored by dietary NAD, it can control the stem cell quantity (Igarashi et al., 2019). 

Ketogenic diets mimic low caloric states by increasing stem cell self renewal and tissue 

regeneration and minimizing the gradual loss of tissue functions during aging. However, diets 

with high fat and carbohydrate levels have opposing effects (Cheng et al., 2019). The intracrine 

ketone bodies can delineate the fate of ISCs and act as moderators of the pro-regenerative results 

of fasting. Diets containing high carbohydrates were reported to inhibit the formation of ketone 

bodies and diminish function, stemness, self-renewal, regenerative power, and epithelial 

homeostasis of ISCs by activating the formation of goblet cells and Paneth cells at the expense 

of enterocytes formation (Cheng et al., 2019).  

ISCs were shown to monitor and respond differently to macronutrients and dietary energy 

sources. Ketogenic diets can enrich intestinal health since the increased production of ketone 

bodies influences the functions of Lgr5+ stem cells and intestinal epithelial homeostasis. 

Hindrance in the production of ketone bodies in Lgr5+ cells can hamper stemness by increasing 

the formation of Paneth and goblet cells. It is now established that the release of stem cell growth 

factors and Wnt ligands by Paneth cells can protect epithelial homeostasis (Cheng et al., 2019). 

Dietary supplementation with N-acetyl-Dglucosamine (GlcNAc) was sufficient to sustain ISC 

proliferation amid caloric prohibition independent of food intake (Igarashi et al., 2019). Diets 

with high sugar can cause modifications in intestinal structure and function and ISCs (Kapinova 

et al., 2018) through alterations in the control of ISC activity.  

Conclusion: 

Lifestyle and diet have significant effects on health and vulnerability to diseases. The 

nutritional requirements of stem cells and their function in quality and quantity are of immense 

significance for the replenishment of cells and the curative process in wounded tissues, as 

nutrients play a vital role in stem cell physiology because many nutrient-derived metabolites have 

genetic and epigenetic roles. Preserving stem cell populations for tissue renewal, regeneration, 

and restoration is one of the features of health posture. Depending on the participation of stem 

cells in tissue renewal and regeneration, demonstrating the nutritional needs in diseases, during 

recovery from trauma, and in the aging process must come into discussion for determining 

nutrient endorsements to reduce the occurrence of diseases and to progress the interpreting of the 

biological pathways and mechanisms that link nutritional requirements of stem cells with 

diseases and aging. 
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