Epigenomic and other important functions of diet and nutrition in Mesenchymal Stem Cells: A brief review

Prosenjt Ghosh
Department of Zoology, Government General Degree College, Kaliganj, Debagram, Nadia, West Bengal, India, Pin – 741137
OrchideID Icon https://orcid.org/0009-0009-9153-3139

Published online:30th November, 2024

DOI: https://doi.org/10.52756/lbsopf.2024.e03.005

Keywords: Diet, Energy, Fatty acid, Mesenchymal, Nutrient, Stem cell

Abstract:

Adult stem cells stand for the regenerative ability of organisms during their lifespan. One characteristic feature of healthy aging is the sustainment of healthy SC populations capable of replenishing organs and physiological systems. The native environment of stem cells is known as the niche. It comprises the nutritional surroundings and is crucial to sustaining the quality and quantity of stem cells available for renewal and regeneration. It is considered mainly that stem cells have unique metabolism and restricted nutrient requirements compared to completely differentiated cells. Nutrients play a significant role in stem cell physiology because many metabolites derived from nutrients discharged during the catabolic process can affect chromatin remodeling, epigenetic changes, and modulation of gene expression. Nutrient requirements differ throughout the lifespan and are altered by factors like individual health, physiological states including pregnancy, disease, sex, age, and during healing from injury. Even if present nutrition guidance mainly focuses on healthy populations and averting nutritional insufficiency diseases, there are growing efforts to demonstrate food-based and nutrient-based suggestions depending on decreasing chronic disease. Understanding the dynamics of stem cell nutritional needs throughout the life span, including the role of nutrition in extending biological age by blunting biological systems decay, is fundamental to establishing food and nutrient guidance for chronic disease reduction and health maintenance.

References:

  • Afarideh, M., Thaler, R., Khani, F., Tang, H., Jordan, K. L., Conley, S. M., Saadiq, I. M., Obeidat, Y., Pawar, A. S., Eirin, A., Zhu, X. Y., Lerman, A., Wijnen, A. J. Van., & Lerman, L. O. (2021). Global epigenetic alterations of mesenchymal stem cells in obesity: The role of vitamin C reprogramming. Epigenetics, 16(7), 705–717. https://doi.org/10.1080/15592294.2020.1819663
  • Aliborzi, G., Vahdati, A., Hossini, S. E., & Mehrabani, D. (2015). Evaluation of bone marrow-derived mesenchymal stem cells for regeneration from guinea pigs. Open Journal of Veterinary Research, 19, 450–459.
  • Aliborzi, G., Vahdati, A., Mehrabani, D., Hosseini, S. E., & Tamadon, A. (2016). Isolation, characterization, and growth kinetic comparison of bone marrow and adipose tissue mesenchymal stem cells of guinea pig. International Journal of Stem Cells, 9(1), 115–123. https://doi.org/10.15283/ijsc.2016.9.1.115
  • Alonso, S., & Yilmaz, O. H. (2018). Nutritional regulation of intestinal stem cells. Annual Review of Nutrition, 38, 273–301. https://doi.org/10.1146/annurev-nutr-082117-051644
  • Alvina, F. B., Gouw, A. M., & Le, A. (2021). Cancer stem cell metabolism. Advances in Experimental Medicine and Biology, 1311, 161–172. https://doi.org/10.1007/978-3-030-65768-0_12
  • Baksh, S. C., Todorova, P. K., Gur-Cohen, S., Hurwitz, B., Ge, Y., Novak, J. S. S., Tierney, M. T., Dela Cruz-Racelis, J., Fuchs, E., & Finley, L. W. S. (2020). Extracellular serine controls epidermal stem cell fate and tumor initiation. Nature Cell Biology, 22(7), 779–790. https://doi.org/10.1038/s41556-020-0525-9
  • Bar-El Dadon, S., & Reifen, R. (2017). Vitamin A and the epigenome. Critical Reviews in Food Science and Nutrition, 57(12), 2404–2411. https://doi.org/10.1080/10408398.2015.1060940
  • Barker, N., Van Es, J. H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P. J., & Clevers, H. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007. https://doi.org/10.1038/nature06196
  • Beyaz, S., Mana, M. D., Roper, J., Kedrin, D., Saadatpour, A., Hong, S. J., Bauer-Rowe, K. E., Xifaras, M. E., Akkad, A., Arias, E., Pinello, L., Katz, Y., Shinagare, S., Abu-Remaileh, M., Mihaylova, M. M., Lamming, D. W., Dogum, R., Guo, G., Bell, G. W., … Yilmaz, O. H. (2016). High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature, 531(7592), 53–58. https://doi.org/10.1038/nature17173
  • Bjerkvig, R., Tysnes, B. B., Aboody, K. S., Najbauer, J., & Terzis, A. J. A. (2005). Opinion: The origin of the cancer stem cell: Current controversies and new insights. Nature Reviews Cancer, 5(11), 899–904. https://doi.org/10.1038/nrc1740
  • Blokzijl, F., de Ligt, J., Jager, M., Sasselli, V., Roerink, S., Sasaki, N., Huch, M., Boymans, S., Kuijk, E., Prins, P., Nijman, I. J., Martincorena, I., Mokry, M., Wiegerinck, C. L., Middendorp, S., Sato, T., Schwank, G., Nieuwenhuis, E. E. S., Verstegen, M. M. A., … van Boxtel, R. (2016). Tissue-specific mutation accumulation in human adult stem cells during life. Nature, 538(7624), 260–264. https://doi.org/10.1038/nature19768
  • Boukouris, A. E., Zervopoulos, S. D., & Michelakis, E. D. (2016). Metabolic enzymes moonlighting in the nucleus: Metabolic regulation of gene transcription. Trends in Biochemical Sciences, 41(8), 712–730. https://doi.org/10.1016/j.tibs.2016.05.013
  • Burgess, R. J., Agathocleous, M., & Morrison, S. J. (2014). Metabolic regulation of stem cell function. Journal of Internal Medicine, 276(1), 12–24. https://doi.org/10.1111/joim.12247
  • Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C., & Wagers, A. J. (2012). Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell, 10(5), 515–519. https://doi.org/10.1016/j.stem.2012.04.002
  • Chen, F. (2019). Linking metabolism to epigenetics in stem cells and cancer stem cells. Seminars in Cancer Biology, 57, iii–v. https://doi.org/10.1016/j.semcancer.2019.05.005
  • Chen, X. R., Bai, J., Yuan, S. J., Yu, C., Huang, J., Zhang, T., & Wang, K. (2015). Calcium phosphate nanoparticles are associated with inorganic phosphate-induced osteogenic differentiation of rat bone marrow stromal cells. Chemical Biology Interactions, 238, 111–117. https://doi.org/10.1016/j.cbi.2015.06.027
  • Cheng, C. W., Biton, M., Haber, A. L., Gunduz, N., Eng, G., Gaynor, L. T., Tripathi, S., Calibasi-Kocal, G., Rickelt, S., Butty, V. L., Moreno-Serrano, M., Iqbal, A. M., Bauer-Rowe, K. E., Imada, S., Ulutas, M. S., Mylonas, C., Whary, M. T., Levine, S. S., Basbinar, Y., … Yilmaz, O. H. (2019). Ketone body signaling mediates intestinal stem cell homeostasis and adaptation.
  • Chung, K. W., & Chung, H. Y. (2019). The effects of calorie restriction on autophagy: Role on aging intervention. Nutrients, 11(12), 2923. https://doi.org/10.3390/nu11122923
  • Clémot, M., Sênos Demarco, R., & Jones, D. L. (2020). Lipid-mediated regulation of adult stem cell behavior. Frontiers in Cell and Developmental Biology, 8, 115. https://doi.org/10.3389/fcell.2020.00115
  • Dai, J. M., Yu, M. X., Shen, Z. Y., Guo, C. Y., Zhuang, S. Q., & Qiu, X. S. (2015). Leucine promotes proliferation and differentiation of primary preterm rat satellite cells in part through the mTORC1 signaling pathway. Nutrients, 7(5), 3387–3400. https://doi.org/10.3390/nu7053387
  • Dai, Z., Ramesh, V., & Locasale, J. W. (2020). The evolving metabolic landscape of chromatin biology and epigenetics. Nature Reviews Genetics, 21(11), 737–753. https://doi.org/10.1038/s41576-020-0270-8
  • Das, A., Iffath, A., Nethaji, K., Dey, A., Rawlo, P., Pathak, S., & Banerjee, A. (2023). An overview of the role of Wnt signalling pathway in governing transdifferentiation of stem cells towards neuronal lineage. Int. J. Exp. Res. Rev., 30, 163-178. https://doi.org/10.52756/ijerr.2023.v30.016
  • Deng, H., Gerencser, A. A., & Jasper, H. (2015). Signal integration by Ca(2+) regulates intestinal stem cell activity. Nature, 528(7581), 212–217. https://doi.org/10.1038/nature16170
  • Fard, M., Akhavan-Tavakoli, M., Khanjani, S., Zare, S., Edalatkhah, H., Arasteh, S., Mehrabani, D., Zarnani, A. H., Kazemnejad, S., & Shirazi, R. (2018). Bilayer amniotic membrane/nano-fibrous fibroin scaffold promotes differentiation capability of menstrual blood stem cells into keratinocyte-like cells. Molecular Biotechnology, 60(2), 100–110. https://doi.org/10.1007/s12033-017-0049-0
  • Gaglio, D., Soldati, C., Vanoni, M., Alberghina, L., & Chiaradonna, F. (2009). Glutamine deprivation induces abortive S-phase rescued by deoxyribonucleotides in K-Ras transformed fibroblasts. PLoS ONE, 4(3), e4715. https://doi.org/10.1371/journal.pone.0004715
  • Ghobadi, F., Rahmanifar, F., Mehrabani, D., Tamadon, A., Dianatpour, M., Zare, S., & Jahromi, I. R. (2018). Endometrial mesenchymal stem stromal cells in mature and immature sheep: An in vitro study. International Journal of Reproductive BioMedicine, 16(2), 83–92. https://doi.org/10.29252/ijrm.16.2.83
  • Ghosh-Choudhary, S., Liu, J., & Finkel, T. (2020). Metabolic regulation of cell fate and function. Trends in Cell Biology, 30(3), 201–212. https://doi.org/10.1016/j.tcb.2019.12.005
  • Gyllenhammer, L. E., Duensing, A. M., Keleher, M. R., Kechris, K., Dabelea, D., & Boyle, K. E. (2023). Fat content in infant mesenchymal stem cells prospectively associates with childhood adiposity and fasting glucose. Obesity (Silver Spring), 31(1), 37–42. https://doi.org/10.1002/oby.23594
  • Hahn, O., Grönke, S., Stubbs, T. M., Ficz, G., Hendrich, O., Krueger, F., Andrews, S., Zhang, Q., Wakelam, M. J., Beyer, A., Reik, W., & Partridge, L. (2017). Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biology, 18, 56. https://doi.org/10.1186/s13059-017-1187-1
  • Hashemi, S. S., Mohammadi, A. A., Kabiri, H., Hashempoor, M. R., Mahmoodi, M., Amini, M., & Mehrabani, D. (2019). The healing effect of Wharton’s jelly stem cells seeded on biological scaffold in chronic skin ulcers: A randomized clinical trial. Journal of Cosmetic Dermatology, 18(6), 1961–1967. https://doi.org/10.1111/jocd.12931
  • Hernández-Saavedra, D., Strakovsky, R. S., Ostrosky-Wegman, P., & Pan, Y. X. (2017). Epigenetic regulation of centromere chromatin stability by dietary and environmental factors. Advances in Nutrition, 8(6), 889–904. https://doi.org/10.3945/an.117.016402
  • Hosios, A. M., Hecht, V. C., Danai, L. V., Johnson, M. O., Rathmell, J. C., Steinhauser, M. L., Manalis, S. R., & Vander Heiden, M. G. (2016). Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Developmental Cell, 36(5), 540–549. https://doi.org/10.1016/j.devcel.2016.02.012
  • Hou, Q., Dong, Y., Yu, Q., Wang, B., Le, S., Guo, Y., & Zhang, B. (2020). Regulation of the Paneth cell niche by exogenous L-arginine couples the intestinal stem cell function. FASEB Journal, 34(8), 10299–10315. https://doi.org/10.1096/fj.201902573RR
  • Igarashi, M., & Guarente, L. (2016). mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell, 166(2), 436–450. https://doi.org/10.1016/j.cell.2016.05.044
  • Igarashi, M., Miura, M., Williams, E., Jaksch, F., Kadowaki, T., Yamauchi, T., & Guarente, L. (2019). NAD+ supplementation rejuvenates aged gut adult stem cells. Aging Cell, 18(2), e12935. https://doi.org/10.1111/acel.12935
  • Jahromi, I. R., Mehrabani, D., Mohammadi, A., Seno, M. M. G., Dianatpour, M., Zare, S., & Tamadon, A. (2017). Emergence of signs of neural cells after exposure of bone marrow-derived mesenchymal stem cells to fetal brain extract. Iranian Journal of Basic Medical Sciences, 20(3), 301–307. https://doi.org/10.22038/ijbms.2017.8360
  • Kamali-Sarvestani, A., Hoseini, S. E., Mehrabani, D., Hashemi, S. S., & Derakhshanfar, A. (2020). Effects in rats of adolescent exposure to Cannabis sativa on emotional behavior and adipose tissue. Bratislavské Lekárske Listy, 12, 297–301. https://doi.org/10.4149/BLL_2020_047
  • Kapinova, A., Kubatka, P., Golubnitschaja, O., Kello, M., Zubor, P., Solar, P., & Pec, M. (2018). Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environmental Health and Preventive Medicine, 23(1), 36. https://doi.org/10.1186/s12199-018-0724-1
  • Khajehahmadi, Z., Mehrabani, D., Ashraf, M. J., Rahmanifar, F., Tanideh, N., Tamadon, A., & Zare, S. (2016). Healing effect of conditioned media from bone marrow-derived stem cells in thioacetamide-induced liver fibrosis of rats. Journal of Medical Sciences, 16(1), 7–15. https://doi.org/10.3923/jms.2016.7.15
  • Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041
  • Li, P., Wang, Y., Li, P., Liu, Y. L., Liu, W. J., Chen, X. Y., Tang, T. T., Qi, K. M., & Zhang, Y. (2022). Maternal inappropriate calcium intake aggravates dietary-induced obesity in male offspring by affecting the differentiation potential of mesenchymal stem cells. World Journal of Stem Cells, 14(10), 756–776. https://doi.org/10.4252/wjsc.v14.i10.756
  • Li, W., Zimmerman, S. E., Peregrina, K., Houston, M., Mayoral, J., Zhang, J., Maqbool, S., Zhang, Z., Cai, Y., Ye, K., & Augenlicht, L. H. (2019). The nutritional environment determines which and how intestinal stem cells contribute to homeostasis and tumorigenesis. Carcinogenesis, 40(8), 937–946. https://doi.org/10.1093/carcin/bgz106
  • Liu, J., Qin, X., Pan, D., Zhang, B., & Jin, F. (2019). Amino acid-mediated metabolism: A new power to influence properties of stem cells. Stem Cells International, 2019, 6919463. https://doi.org/10.1155/2019/6919463
  • Lu, V., Roy, I. J., & Teitell, M. A. (2021). Nutrients in the fate of pluripotent stem cells. Cell Metabolism, 33(11), 2108–2121. https://doi.org/10.1016/j.cmet.2021.09.013
  • Mani, K. K., El-Hakim, Y., Branyan, T. E., Samiya, N., Pandey, S., Grimaldo, M. T., Habbal, A., Wertz, A., & Sohrabji, F. (2023). Intestinal epithelial stem cell transplants as novel therapy for cerebrovascular stroke. Brain, Behavior, and Immunity, 10, 345–360. https://doi.org/10.1016/j.bbi.2022.10.015
  • Matsushita, K., & Dzau, V. J. (2017). Mesenchymal stem cells in obesity: Insights for translational applications. Laboratory Investigation, 97(10), 1158–1166. https://doi.org/10.1038/labinvest.2017.42
  • Mehrabani, D., Khajehahmadi, Z., Tajik, P., Tamadon, A., Rahmanifar, F., Ashraf, M., Tanideh, N., & Zare, S. (2019). Regenerative effect of bone marrow-derived mesenchymal stem cells in thioacetamide-induced liver fibrosis of rats. Archives of Razi Institute, 74(3), 279–286. https://doi.org/10.22092/ari.2018.110029.1120
  • Mehrabani, D., Nazempour, M., Mehdinavaz-Aghdam, R., Hashemi, S. S., Jalli, R., Moghadam, M. S., Zare, S., Jamhiri, I., Moayedi, J., & Karimi-Busheri, F. (2022). MRI tracking of human Wharton’s jelly stem cells seeded onto acellular dermal matrix labeled with superparamagnetic iron oxide nanoparticles in burn wounds. Burns & Trauma, 10, tkac018. https://doi.org/10.1093/burnst/tkac018
  • Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signaling pathway coordinates cell growth, autophagy, and metabolism. Nature Cell Biology, 13(9), 1016–1023. https://doi.org/10.1038/ncb2329
  • Mohammadzadeh, N., Mehrabani, D., Zare, S., Masoumi, S. S., Rasouli-Nia, A., & Karimi-Busheri, F. (2022). What happens when methamphetamine is added to nutrients of cell culture medium? In vitro assessment of morphological, growth, and differential potential of Wharton’s jelly stem cells. International Journal of Nutrition Sciences, 74(4), 233–240. https://doi.org/10.30476/IJNS.2022.97432.1210
  • Mondal, S., Saha, S., Chatterjee, S., & Bhowmik, B. (2024). Chemoresistance of Cervical Cancer Stem Cells: Challenges and Prospects. © International Academic Publishing House (IAPH), Dr. S. Das, Dr. A. K. Panigrahi, Dr. R. M. Stiffin & Dr. J. K. Das (eds.), Life As Basic Science: An overview and Prospects for The Future Volume: 1, pp. 197-207. ISBN:978-81-969828-9-8. https://doi.org/10.52756/lbsopf.2024.e01.016
  • Moussaieff, A., Rouleau, M., Kitsberg, D., Cohen, M., Levy, G., Barasch, D., Nemirovski, A., Shen-Orr, S., Laevsky, I., Amit, M., Bomze, D., Elena-Herrmann, B., Scherf, T., Nissim-Rafinia, M., Kempa, S., Itskovitz-Eldor, J., Meshorer, E., Aberdam, D., & Nahmias, Y. (2015). Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metabolism, 21(3), 392–402. https://doi.org/10.1016/j.cmet.2015.02.002
  • Nazempour, M., Mehrabani, D., Mehdinavaz-Aghdam, R., Hashemi, S., Derakhshanfar, A., Zare, S., Zardosht, M., Moayedi, J., & Vahedi, M. (2020). The effect of allogenic human Wharton’s jelly stem cells seeded onto acellular dermal matrix in healing of rat burn wounds. Journal of Cosmetic Dermatology, 19(4), 995–1001. https://doi.org/10.1111/jocd.13109
  • Neophytou, C., & Pitsouli, C. (2022). How gut microbes nurture intestinal stem cells: A Drosophila perspective. Metabolites, 12(2), 169. https://doi.org/10.3390/metabo12020169
  • Nikolits, I., Nebel, S., Egger, D., Kreß, S., & Kasper, C. (2021). Towards physiologic culture approaches to improve standard cultivation of mesenchymal stem cells. Cells, 10(4), 886. https://doi.org/10.3390/cells10040886
  • Novak, J. S. S., Baksh, S. C., & Fuchs, E. (2021). Dietary interventions as regulators of stem cell behavior in homeostasis and disease. Genes & Development, 35(3), 199–211. https://doi.org/10.1101/gad.346973.120
  • O’Brien, L. E., Soliman, S. S., Li, X., & Bilder, D. (2011). Altered modes of stem cell division drive adaptive intestinal growth. Cell, 147(3), 603–614. https://doi.org/10.1016/j.cell.2011.08.048
  • Obata, F., Tsuda-Sakurai, K., Yamazaki, T., Nishio, R., Nishimura, K., Kimura, M., Funakoshi, M., & Miura, M. (2018). Nutritional control of stem cell division through S-adenosylmethionine in Drosophila intestine. Developmental Cell, 44(6), 741–751.e3. https://doi.org/10.1016/j.devcel.2018.02.017
  • Obniski, R., Sieber, M., & Spradling, A. C. (2018). Dietary lipids modulate Notch signaling and influence adult intestinal development and metabolism in Drosophila. Developmental Cell, 47(1), 98–111.e5. https://doi.org/10.1016/j.devcel.2018.08.013
  • Payehdar, A., Hosseini, S. E., Mehrabani, D., et al. (2017). Healing effect of conditioned medium of adipose tissue-derived mesenchymal stem cells on histomorphometric changes of mice testis in a busulfan-induced azoospermia model. Horizon of Medical Sciences, 233(4), 235–242.
  • Porro, S., Genchi, V. A., Cignarelli, A., Natalicchio, A., Laviola, L., Giorgino, F., & Perrini, S. (2021). Dysmetabolic adipose tissue in obesity: Morphological and functional characteristics of adipose stem cells and mature adipocytes in healthy and unhealthy obese subjects. Journal of Endocrinological Investigation, 44(5), 921–941. https://doi.org/10.1007/s40618-020-01446-8
  • Puca, F., Fedele, M., Rasio, D., & Battista, S. (2022). Role of diet in stem and cancer stem cells. International Journal of Molecular Sciences, 23(15), 8108. https://doi.org/10.3390/ijms23158108
  • Rafalski, V. A., Mancini, E., & Brunet, A. (2012). Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. Journal of Cell Science, 125(24), 5597–5608. https://doi.org/10.1242/jcs.114827
  • Reid, M. A., Dai, Z., & Locasale, J. W. (2017). The impact of cellular metabolism on chromatin dynamics and epigenetics. Nature Cell Biology, 19(11), 1298–1306. https://doi.org/10.1038/ncb3629
  • Richards, P., Pais, R., Habib, A. M., Brighton, C. A., Yeo, G. S. H., Reimann, F., & Gribble, F. M. (2016). High-fat diet impairs the function of glucagon-like peptide-1-producing L-cells. Peptides, 77, 21–27. https://doi.org/10.1016/j.peptides.2015.06.006
  • Saito, Y., Iwatsuki, K., Hanyu, H., Maruyama, N., Aihara, E., Tadaishi, M., Shimizu, M., & Kobayashi-Hattori, K. (2017). Effect of essential amino acids on enteroids: Methionine deprivation suppresses proliferation and affects differentiation in enteroid stem cells. Biochemical and Biophysical Research Communications, 488(1), 171–176. https://doi.org/10.1016/j.bbrc.2017.05.029
  • Sarikhani, M., Garbern, J. C., Ma, S., Sereda, R., Conde, J., Krähenbühl, G., Escalante, G. O., Ahmed, A., Buenrostro, J. D., & Lee, R. T. (2020). Sustained activation of AMPK enhances differentiation of human iPSC-derived cardiomyocytes via sirtuin activation. Stem Cell Reports, 15(3), 498–514. https://doi.org/10.1016/j.stemcr.2020.06.012
  • Shackelford, D. B., & Shaw, R. J. (2009). The LKB1-AMPK pathway: Metabolism and growth control in tumor suppression. Nature Reviews Cancer, 9(8), 563–575. https://doi.org/10.1038/nrc2676
  • Shyamasundar, S., Jadhav, S. P., Bay, B. H., Tay, S. S., Kumar, S. D., Rangasamy, D., & Dheen, S. T. (2013). Analysis of epigenetic factors in mouse embryonic neural stem cells exposed to hyperglycemia. PLoS ONE, 8(6), e65945. https://doi.org/10.1371/journal.pone.0065945
  • Smith, J., Ladi, E., Mayer-Proschel, M., & Noble, M. (2000). Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proceedings of the National Academy of Sciences of the USA, 97(18), 10032–10037. https://doi.org/10.1073/pnas.170209797
  • Stover, P. J., Field, M. S., Brawley, H. N., Angelin, B., Iversen, P. O., & Frühbeck, G. (2022). Nutrition and stem cell integrity in aging. Journal of Internal Medicine, 29(6), 587–603. https://doi.org/10.1111/joim.13507
  • Sun, C., Shang, J., Yao, Y., Yin, X., Liu, M., Liu, H., & Zhou, Y. (2016). O-GlcNAcylation: A bridge between glucose and cell differentiation. Journal of Cellular and Molecular Medicine, 20(4), 769–781. https://doi.org/10.1111/jcmm.12807
  • Taya, Y., Ota, Y., Wilkinson, A. C., Kanazawa, A., Watarai, H., Kasai, M., Nakauchi, H., & Yamazaki, S. (2016). Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science, 354(6316), 1152–1155. https://doi.org/10.1126/science.aag3145
  • Theret, M., Gsaier, L., Schaffer, B., Juban, G., Larbi, S. B., Weiss-Gayet, M., Bultot, L., Collodet, C., Foretz, M., Desplanches, D., Sanz, P., Zang, Z., Yang, L., Vial, G., Viollet, B., Sakamoto, K., Brunet, A., Chazaud, B., & Mounier, R. (2017). AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis. The EMBO Journal, 36(14), 1946–1962. https://doi.org/10.15252/embj.201695273
  • Van Winkle, L. J., & Ryznar, R. (2019). One-carbon metabolism regulates embryonic stem cell fate through epigenetic DNA and histone modifications: Implications for transgenerational metabolic disorders in adults. Frontiers in Cell and Developmental Biology, 7, 300. https://doi.org/10.3389/fcell.2019.00300
  • Viitanen, A. I. (2019). Glutamine control of intestinal stem cells in Drosophila melanogaster. (Master’s thesis, University of Helsinki, Helsinki, Finland).
  • Walvekar, A. S., Srinivasan, R., Gupta, R., & Laxman, S. (2018). Methionine coordinates a hierarchically organized anabolic program enabling proliferation. Molecular Biology of the Cell, 29(25), 3183–3200. https://doi.org/10.1091/mbc.e18-08-0515
  • Wang, D., Li, P., Odle, J., Lin, X., Zhao, J., Xiao, K., & Liu, Y. (2022). Modulation of intestinal stem cell homeostasis by nutrients: A novel therapeutic option for intestinal diseases. Nutrition Research Reviews, 35(2), 150–158. https://doi.org/10.1017/S0954422421000172
  • Wang, D., Odle, J., & Liu, Y. (2021). Metabolic regulation of intestinal stem cell homeostasis. Trends in Cell Biology, 31(5), 325–327. https://doi.org/10.1016/j.tcb.2021.02.001
  • Wang, Q., Liu, S., Zhai, A., Zhang, B., & Tian, G. (2018). AMPK-mediated regulation of lipid metabolism by phosphorylation. Biological & Pharmaceutical Bulletin, 41(7), 985–993. https://doi.org/10.1248/bpb.b17-00724
  • Yilmaz, Ö. H., Katajisto, P., Lamming, D. W., Gültekin, Y., Bauer-Rowe, K. E., Sengupta, S., Birsoy, K., Dursun, A., Yilmaz, V. O., Selig, M., Nielsen, G. P., Mino-Kenudson, M., Zukerberg, L. R., Bhan, A. K., Deshpande, V., & Sabatini, D. M. (2012). mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature, 486(7404), 490–495. https://doi.org/10.1038/nature11163
  • Zare, S., Mehrabani, D., Jalli, R., Moghadam, M. S., Manafi, N., Mehrabani, G., Jamhiri, I., & Ahadian, S. (2019). MRI-tracking of dental pulp stem cells in vitro and in vivo using dextran-coated superparamagnetic iron oxide nanoparticles. Journal of Clinical Medicine, 8(9), 1418. https://doi.org/10.3390/jcm8091418
  • Zhang, P., Liang, X., Shan, T., Jiang, Q., Deng, C., Zheng, R., & Kuang, S. (2015). mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration. Biochemical and Biophysical Research Communications, 463(1), 102–108. https://doi.org/10.1016/j.bbrc.2015.05.032
  • Zhang, P., Zhang, H., Lin, J., Xiao, T., Xu, R., Fu, Y., Zhang, Y., Du, Y., Cheng, J., & Jiang, H. (2020). Insulin impedes osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence via the TGF-β1 pathway. Aging, 12(3), 2084–2100. https://doi.org/10.18632/aging.102723 Zhang, X., Jin, Q., & Jin, L. H. (2017). High sugar diet disrupts gut homeostasis through JNK and STAT pathways in Drosophila. Biochemical and Biophysical Research Communications, 487(4), 910–916. https://doi.org/10.1016/j.bbrc.2017.04.156

check for update

Life as Basic Science: An Overview and Prospects for Future [Volume: 3]

How to Cite
Prosenjt Ghosh (2024). Epigenomic and other important functions of diet and nutrition in Mesenchymal Stem Cells: A brief review. © International Academic Publishing House (IAPH), Dr. Somnath Das, Dr. Jayanta Kumar Das, Dr. Mayur Doke and Dr. Vincent Avecilla (eds.), Life as Basic Science: An Overview and Prospects for the Future Volume: 3, pp. 115-130. ISBN: 978-81-978955-7-9
DOI: https://doi.org/10.52756/lbsopf.2024.e03.005

SHARE WITH EVERYONE

Continue reading in any device

Continue reading in any device